GENEL KİMYA

LABORATUVAR DENEMELERİ

Prof. Dr. Emre DÖLEN – Dr. Güler YALÇIN – Doç. Dr. Mürşit PEKİN
Marmara Üniversitesi Eczacılık Fakültesi Analitik Kimya Anabilim Dalı
GENEL KİMYA
LABORATUVAR DENEMELERİ

Prof. Dr. Emre DÖLEN – Dr. Güler YALÇIN – Doç. Dr. Mürşit PEKİN
Marmara Üniversitesi Eczacılık Fakültesi Analitik Kimya Anabilim Dalı

İSTANBUL – 1991

MARMARA ÜNİVERSİTESİ
TEKNİK EĞİTİM FAKÜLTESİ
DÖNER SERMAYE İŞLETMESİ
MATBAAYA BİRİMİNDE BAŞILMIŞTIR.
ÖNSÖZ

Bu kitap Marmara Üniversitesi Eczacılık Fakültesi’nde Genel Kimya dersine bağlı ve bir yarıyıl süreylehaftada iki saat olarak yaptırılan laboratuvar çalışmalarına yardımcı olmak üzere hazırlanmıştır. Bu laboratuvar, öğrencileri laboratuvar çalışmasına alıştırmayı ve kimyanın bazı temel kavramlarını deneysel olarak vermeyi amaçlamaktadır.

Kitapın temelini oluşturan notlar bundan önce dört kez ve her kere-sinde geliştirilerek teksir edilmiştir. Bu kez kitap haline getirilirken yeniden gözden geçirilip genişletilmiştir. Uygulamada seçim olanağı sağlamak amacıyla her konuda fazla sayıda deneme verilmeye çalışılmış ve aynı amaçla preparatlar bölümü de geniş tutulmuştur.

Kitapta kuramsal bilgiler genellikle verilmemiş ve bunun için "Kalitatif Analiz Uygulaması" adlı kitabımızda göndermeler yapılmıştır.* Bu nedenle her iki kitabin birliktede kullanılması yararlı olacaktır.

Kitapın basımında emeği geçenlere teşekkür eder öğrencilere yararlı olmasını dilerim.

Prof.Dr. Emre DÖLEN
Analitik Kimya Anabilim Dalı Başkanı

İÇINDEKİLER

Önsöz ... 3
İçindekiler ... 5
Laboratuvar araçları ve kullanılması .. 7
 Bunsen beki ve bek alevinin yapısı .. 7
 Deneme tüpü ve kullanılması .. 7
 Teraziler ve tartma ... 8
Kimyasal belirteç .. 15
Çözeltiler ve çözünürlük .. 16
 Çözeltilerin konsantrasyonları .. 16
 Maddelerin çözünürlüğü ... 16
 Orantılı dağılım yasası ve ekstraksiyon ... 18
 Orantılı dağılım yasası ... 18
 Ekstraksiyon .. 19
Kimyasal denge ve kütlelerin etkimesi yasası ... 20
Kimyasal reaksiyonların hızları .. 21
 Homojen reaksiyonların hızı ... 21
 Heterojen reaksiyonların hızları .. 23
Çözünürlük çarpımı ve çökme ... 24
Çökeltilerin çözeltilerden ayrılması ... 28
 Aktarma (Dekantasyon) .. 28
 Süzme ve çökeltinin yıkanması ... 28
Kristallenme ... 29
Asitler ve bazlar ... 31
 Asitler, bazlar ve indikatörler ... 31
 Amfoterlik .. 33
 Hidroliz ... 35
Tampon çözeltiler ... 37

Kompleksleşme reaksiyonları .. 39

Kompleks anyonlar .. 39
Kompleks katyonlar .. 39
Kompleks katyon ve kompleks anyon içeren bileşikler 40
Kompleks ioniının kararlılıklarını 40

Yükseltgenme - İndirgenme reaksiyonları 42

Preparatlar .. 57
Amonyum mangan fosfat (NH₄MnPO₄·H₂O) 57
Sodyum perborat (NaBO₃·4H₂O) 57
Kurşun kromat (PbCrO₄) .. 58
Demir(II) oksit (FeO) .. 58
Bakır(I) oksit (Cu₂O) .. 59
Bakır(II) oksit (CuO) .. 60
Krom(III) oksit (Cr₂O₃) .. 61
Bakır(II) hidroksit [Cu(OH)₂] 61
Borik asit (H₃BO₃) ... 62
Schweizer belirteci ([Cu(NH₃)₄] (OH)₂) 62
Fehling çözeltisi .. 63
Tetraamminbakır(II) sülfat ([Cu (NH₃)₄] SO₄·H₂O) 64
Heksaamminnikel(II) klorür ([Ni(NH₃)₆] Cl₂) 64
Potasyum trioksalatokromat(III) (K₃[Cr (C₂O₄)₃].3H₂O) 65
Potasyum trioksalatoferrat(III) (K₃[Fe(C₂O₄)₃]) 65
Demir(II) sülfat (FeSO₄·7H₂O) 66
Mohr tuzu [(NH₄)₂ Fe(SO₄)₂·6H₂O] 66
Potasyum krom şapı (KCr(SO₄)₂·12H₂O) 67
Amonyum demir şapı (NH₄Fe(SO₄)₂·12H₂O) 68
Sodyum tiyosülfat (Na₂S₂O₃·5H₂O) 68

Kaynaklar ... 70
BUNSEN BEKİ VE BEK ALEVİNİN YAPISI

(a) İç koni: Yaklaşık olarak % 60 oranında hava içerir. Bu bölgede yanma olayı olmadığından soğuktur.

(b) İndirgen bölge: Alevin iç konisinin ucuna gelen bölümü hidrokarbonlar bakımından alevin en zengin ve aynı zamanda en soğuk bölümüdür. İndirgeme işlemleri alevin bu bölgesinde yapılır.

(c) Alev mantosu: Gaz ve hava karışımının yandığı alandır ve alevin en sıcak bölgesidir.

(d) Yükseltgen bölge: Alevin oksijen bakımından en zengin bölgesidir. Bu nedenle yükseltgeme işlemleri alevin bu bölgesinde yapılır.

Şekil - 1: Bek alevinin yapısı.

DENEME - 2: Beki yapık iç koniyi oluşturduktan sonra bir kibrit çöpünü yatay olarak bekin ağzına kısa bir süre tutarak birden çekiniz: İç koninin soğuk olduğu nedeniyle, çöpün ortasının yanmamış olduğu görülür.

. DENEME TÜPÜ VE KULLANILMASI

Deneme tüpü camdan yapılmış, uzun, ince cidarlı silindirik bir kaptır. İçindeki sıvıların her yönünde incelenebilmesi, çevrilip sallanmak koşuluyla doğrudan doğruya alevde ıtılabilmesi ve büyük bir görüş yüzeyine sahip olması tüpün başlıca üstünlükleridir. Buna karşılık, içine

Şekil – 2: Deneme tüpünde sıvıların ıstılmasına.

TERAZİLER VE TARTMA

1 kilogram (kg) = 1000 gram (g)

Dünyanın bir cisim üzerine uyguladığı çekim kuvvetine ağırlık adı verilir. Bir cismin ağırlığı (G), cismin kütlesi (m) ile yerçekimi ivmesinin (g) çarpımına eşittir.

\[G = m \cdot g \]

Yerçekimi ivmesinin değeri coğrafi enlem ve yeryüzünden olan yüksekliğe göre değiştiğinden ağırlık da buna bağlı olarak değişir.
Ağrılık kuvvet birimleri ile gösterilir. Yeryüzünde aynı yerde bulunan ve kütleleri eşit olan iki cismin ağrılıkları da eşittir. Çünkü bunların her ikisi de aynı yerleşkimi kuvvetinin etkisi altındadır.

Cisimlerin kütleleri terazi kullanılarak karşılaştırma yoluyla ölçülür. Tartma işlemi sırasında iki cismin ağrılıkları karşılaştırılırlar ve terazi dengeye geldiğinde her iki kefeye uygulanan yerleşkimi kuvvetleri yani bu kefelerdeki cisimlerin ağrılıkları eşit olur. Her iki kefeye etkiyen yerleşkimi ivmesi (g) eşit olarak alınabileceğinden ağrılıkları eşit olan cisimlerin kütleleri de eşittir.

Laboratuvara amaca göre duyarlıları farklı düzeylerde olan çeşitli teraziler kullanılır. Laboratuvara kullanılan çift kefeli 0,01 g (santigram) duyarlı terazilerin kullanılmasına ilişkin kurallar aşağıda belirtilmiştir.

1) Terazinin biçakları yerinde olmalıdır.

2) Tartılan madde hiçbir zaman doğrudan doğruya kefeye konulmaz. Bir kağıt veya saat camına konularak tartılır.

3) Terazi açıkken tartılacak madde ve standart ağrılıklar (gramlar) kefelere konulmaz.

4) Gram ve miligram ağrılıklar daima pens ile tutulur.

5) Tartma işleminden sonra standart ağrılıklar kutudaki yerlerine konulur.

6) Tartma işlemi sırasında tartılacak madde sol kefeye ve standart ağrılık da sağ kefeye konulur.

7) Teraziler daima temiz tutulmalı ve kefeleri yerinden çıkarılmamalıdır.
Şekil - 3: Laboratuvar araçları.
Şekil 4: Laboratuvar araçları.
Şekil - 5: Laboratuvar araçları.
<table>
<thead>
<tr>
<th>BİRİNCİ YÖNTEM</th>
<th>ÜÇÜNCÜ YÖNTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) İçindeki maddenin bir bölümü plastik kapağın içine girinceye kadar şişe çevrilir ve eğilir.</td>
<td>Bir spatül ile biraz madde alınır.</td>
</tr>
<tr>
<td>(2) Maddenin bir bölümü içinde kalacak biçimde kapak yavaşça alınır.</td>
<td>İstenilen miktarda madde düşinceye kadar spatüle bir kaleml veya baget ile hassife vurulur.</td>
</tr>
<tr>
<td>(3) İstenilen miktarda madde düşinceye kadar kapağa bir kaleml veya baget ile hassife vurulur.</td>
<td>DAMLALIĞIN KULLANILMASI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>İKİNCİ YÖNTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOĞRU</td>
</tr>
<tr>
<td>[Diğer bir yöntem]</td>
</tr>
<tr>
<td>YANLIŞ</td>
</tr>
</tbody>
</table>

Şekil - 6: Katı maddelerin şişeden alınması ve damlalıkın kullanılması.
BİR KAPAĞIN ALINMASI

(1) Etiket iki kez okunur.

(2) Kapak tutulur ve şişe kapak ıslanmaya kadar eğilir.

(3) Şişenin boynu ıslanır, kapagın dibi şişenin ağzına sıyrılır.

(4) Kapak yerine yerleştirilir ve yeniden elin tersi ile geri çekilir.

BİR SİVININ AKTARILMASI

Kapak hiçbir zaman yere konulmaz.

Şişenin ıslanan boynu ve ağzı ilk damlanın düşarı taşmasını önler.

Olanak olduğunda bir cam çubuk yardımıyla sıvı aktılır.

Beherden behere aktarmada bir cam çubuk kullanılır.

Şekil - 7 : Sıvıların şişeden alınması ve aktarılması.
KIMYASAL BELİRTEÇ

Genellikle kimsesal maddeleri doğrudan doğruya tanima ve saptama olanak olmadığından, bunların bileşimi bizce bilinen bazı belirli maddelerin etkisiyle kendine özgü ve duyularımızla farklıdiveleнемiz yeni özellikler almasından yararlanılır. Bu amaçla kullanulan ve bileşimi bizce önceden bilinen etkili maddelere kimsesal belirteç (reaktif) veya kısaca belirteç ve ortaya çıkan kimsesal olaya da kimsesal reaksiyon adı verilir. Bir belirtecin bir maddenin tanınamasında kullanılabilmesi için oluşan kimsesal reaksiyon sonucunda renkli veya kokulu bir gaz çıkısı, renkli veya renksiz bir çökeltinin oluşması ve çözelitin renginin değişmesi gibi duyu organlarımızla farklıdivele numériquez bir değişim ortaya çıkmaya gereklidır.

DENEME - 3: Çok seyreltik bir baryum klorür (BaCl₂) çözeltisi hazırlayarak iki deneme tüpüne bölünüz. Aynı biçimde bir sodyum sulfat (Na₂SO₄) çözeltisi hazırlayarak iki deneme tüpüne koyunuz. Önce, sodyum sulfat çözeltisi üzerine baryum klorür çözeltisini damla damla katınız: Beyaz bir çökelti oluşturur. Bu kez aynı işlemin karşıtını yapınız, yani baryum klorür çözeltisi üzerine damla damla sodyum sulfat çözeltisi katınız: Benzer biçimde beyaz bir çökelti oluşturur. Her iki durumda da oluşan beyaz çökelti baryum sulfat'tır (BaSO₄) ve oluşan kimsesal reaksiyonun denklemi de,

\[\text{BaCl}_2 + \text{Na}_2\text{SO}_4 \rightarrow \text{BaSO}_4 + 2\text{NaCl} \]

dir. Denklemi yalnız reaksiyon'a giren bileşenleri (iyonları) göz önüne alarak yazacak olursak,

\[\text{Ba}^{2+} + \text{SO}_4^{2-} \rightarrow \text{BaSO}_4 \]

olar. Buna göre, Ba²⁺ iyonu sulfat iyonunun ve sulfat iyonu da Ba²⁺ iyonunun belirtecdir. Kimsesal reaksiyon denklemlerinin yazılımda yukarıda olduğu gibi yalnız birbirleriyle reaksiyon'a giren iyon veya maddeler göz önüne alır ve formül birimlerine göre denklem yazılımdan kaçınılar.

DENEME - 4: (Organik belirteçler). Seyreltik bir nikel(II) tuzu çözeltisinden 2 – 3 mL alınız ve 5 – 10 damla amonyak çözeltisi koyarak hafif bazik yapınız. Daha sonra dimetilgliko̦sim'in etanoldeki %
lik çözeltisinden birkaç damla katınız: Pembe - kırmızı renkli ve hacimli nikel dimetilgloksimat çözeltisi oluşur.

\[
\begin{align*}
H_3C-C &= NOH \\
2 & \quad +Ni^{2+} + 2NH_3 \rightarrow \quad H_3C-C &= NOH \\
\downarrow & \quad N = C - CH_3 \\
& \quad +2NH_4^+ \\
\end{align*}
\]

Dimetilgloksim \quad Nikel dimetilgloksimat

ÇÖZELTİLER VE ÇÖZÜNÜRLÜK

ÇÖZELTİLERİN KONSANTRASYONLARI

Kalitatif Analiz Uygulaması; Sayfa: 18 – 28.

DENEME - 5: KCl, NH₄Cl, KNO₃ veya Na₂CO₃ gibi maddelerden birinin yüzde temeline göre çözeltisini hazırlayın.

DENEME - 6: CuSO₄, KOH, BaCl₂ veya KAl(SO₄)₂ gibi maddelerden birinin molarite temeline göre çözeltisini hazırlayın.

DENEME - 7: Na₂S₂O₃, K₂Cr₂O₇, KMnO₄, H₂SO₄ veya Fe₂(SO₄)₃ gibi maddelerden birinin normalite temeline göre çözeltisini hazırlayın.

MADDELERİN ÇÖZÜNÜRLÜĞÜ

Kalitatif Analiz Uygulaması; Sayfa: 58 – 69

DENEME - 8: Bir tüpe biraz naftalin koyunuz ve üzerine su ekleyerek çalkalayınız. Naftalinin suda çözünmediği görülür.

Bir başka tüpe biraz naftalin koyup üzerine kloroform (CHCl₃) veya karbon tetraklorür (CCl₄) ekleyerek çalkalayınız: Naftalinin bu organik çözücülerde kolaylıkla çözündüğü görülür.

DENEME - 9 : Bir tüpe biraz anilinyum hidroklorür (C₆H₅NH₃⁺Cl⁻) koyunuz ve üzerine biraz su ekleyerek çalkalayınız: Anilinyum hidroklorürün kolaylıkla çözündüğü görülür.

Bir başka tüpe biraz anilinyum hidroklorür koyunuz ve üzerine biraz petrol eteri ekleyerek çalkalayınız: Anilinyum hidroklorürün çözünmediği görülür.

Açıklama : Anilinin kendisinin organik çözücülerde çözünmesine karşılık, anilinyum hidroklorür polar nitelikte bir tuz olduğundan genellikle organik çözücülerde çözünmez.

DENEME - 10 : (Çözünme sırasında hacim değişimi).

(a) Sodyum klorürün suda çözünmesi : 21 g sodyum klorür tartınız ve bunun hacmini yoğunluğu (d = 2,17 g/mL) yardımıyla hesaplayıniz. 100 mL lik bir ölçü silindirine (mezür) 90 mL su, bir cam çubuk ve bir termometre koyunuz. Suyun düzeyini ve sıcaklığını saptayınız. Sodyum klorürü kuru bir huni yardımıyla silindirin çeperlerine değdirmenin suya katarak çözünenceye kadar cam çubukla karıştırınız. Çözeltilinin oda sıcaklığına gelmesini bekleyiniz ve düzeyini saptayınız. Suyun ve elde ettiği çözeltinin hacmillarını karşılaştırınız.

(b) Amonyum klorürün suda çözünmesi : 21 g amonyum klorür tartınız, hacmini hesaplayıniz (d = 1,53 g/mL) ve 150 mL suda çözünüz. İşlemi (a) daki gibi yaparak çözeltinin hacmini saptayınız.

(c) Şekerin suda çözünmesi : 50 g şeker tartınız, hacmini hesaplayıniz (d = 1,59 g/mL) ve 250 mL suda çözünüz. İşlemi (a) daki gibi yaparak çözeltinin hacmini saptayınız.

(d) Etanolün suda çözünmesi : 10 mL lik bir ölçü silindirine 4 mL su ve ince bir cam çubuk koyarak silindirdeki sivi düzeyini saptayınız. Silindire 4 mL daha su koyarak düzeyi yeniden saptayınız ve suyu boşaltınız. Silindire 4 mL su ile 4 mL etanol koyup iyice karıştırınız ve çözeltinin düzeyini saptayınız.
Denemelerde elde ettiğiınız sonuçları aşağıdaki gibi bir çizelgede toplayınız ve tartışınız.

<table>
<thead>
<tr>
<th>Deney No.</th>
<th>Incelenen madde</th>
<th>Hacim (mL)</th>
<th>Maddenin Cam çubukla birlikte çözeltinin toplam hacmi (mL)</th>
<th>Alnan madde- lerin hacmileri toplamından sapma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Su</td>
<td>Su ve cam çubuk</td>
<td>Kütle-si (g)</td>
<td>Yoğun-luğunu (g/mL)</td>
</tr>
</tbody>
</table>

ORANTILI DAĞILIM YASASI VE EKSTRAKSIYON

Orantılı dağıtım yasası: Birbirleri ile karışmayan iki sıvıdan oluşan bir sistemde bu sıvıların her ikisinde de çözünen üçüncü bir madde katılırsa, bu madde birbiri ile karışmayan sıvıların her ikisinde de çözünür. Çözünen maddenin bu sıvılardaki çözünürlüğüne ve çözünen miktarına bağlı olmaksızın iki sıvı faz arasında dinamik bir denge kurulur. Birbirleriyle karışmayan iki sıvıdan oluşan bir sistemde üçüncü bir maddenin çözünmesine bu maddenin iki faz arasında dağılması adı verilir. Sıvı fazlar arasında maddenin çözünmesine ilişkin dinamik denge kurulduğunda, çözünen maddenin birinci sıvı fazdaki konsantrasyonu \(C_1 \) ve ikinci sıvı fazdaki konsantrasyonu da \(C_2 \) ise bunlar arasında,

\[
K = \frac{C_1}{C_2}
\]

Bu yasa *Nernst dağıtım yasası* olarak adlandırılır. Buna göre, bir madde, bir sistemdeki çeşitli fazlar içinde dağılmış olarak bulunuyorsa, bu sistemin dengede olabilmesi için bu fazlardaki konsantrasyonları arasında belirli sıcaklıkta belirli olan bir oran bulunmalıdır.

Dağılma katsayısının sıcaklıkla değişimsinin nedenini araştırınız.
DENEME - 11 : (Elementel iyodun su ve kloroform arasında dağılması). Bir tüpe 5 – 6 damla % 0,2 lik iyot çözeltisi koyup tümü yarısına kadar su ile doldurunuz*. Daha sonra 1 – 2 mL kloroform katınız, tüpün ağızını parmağınız ile kapatarak birkaç dakika şiddetle çalkalayınız ve tüpü bir süre bekleterek gözleyiniz: Su ve kloroform fazlarının ayrılması sonucu sulu fazin renksiz ve kloroform fazının da menekşe renkli olduğu görülür.

Açıklama : Elementel iyod su az çözünür. Buna karşılık, kloroform, karbon tetraclorür ve alkol gibi organik çözücülerde çok iyi çözünür. Iyodun su ve kloroform arasındaki dağılma kataysısı oda sıcaklığı için,

\[
K = \frac{[I_2]_{\text{kloroform}}}{[I_2]_{\text{su}}} = 180
\]

dir. Buna göre, iyodun kloroformdaki çözünürlüğünün sudaki çözünürlüğünden çok daha fazla olması nedeniyle su fazındaki iyodun çok büyük bir bölümü kloroform fazına geçer.

Elementel iyodun su ve kloroformdaki çözeltilerinin farklı renklerde olmasıın nedenini araştırınız.

Ekstraksiyon : Homojen bir katı veya sivi karışımda bulunan bileşenlerden birinin bu karışımdan uygun bir çözücü yardımıyla çıkarılıp ayrılmak ekstraksiyon adı verilir. Ekstraksiyon orantılı dağılım yasasının bir uygulamasıdır. Ekstraksiyon işlemi genellikle bir çözeltide çözünmüş olarak bulunan bir maddeyi çözelti ile karışmayan fakat çözünmüş olarak bulunan maddeyi başka bir çözücü (genellikle eter, kloroform gibi organik çözücüler) ile çalkalayarak çekip almaya dayanır. İyi bir ayırma için bu işlemi ardarda birçok kez saf çözücü ile tekrarlamak gerekir. Laboratuvarda ekstraksiyon işlemi için genellikle ayırma hunisi kullanılır.

* % 0,2 lik iyot çözeltisi 100 mL suda 1 g potasyum iyodür ve 0,2 g elementel iyot çözülerek hazırlanır.
Ayırma hunisine konulan sulu çözelti üzerine bununla karışmayan organik çözücü katılır ve kapak kapatılarak iyice çalıkanlar. İşlem sırasında oluşan basınçta gidermek için kapak sıkıca tutularak huni ters çevrilir ve musluk açılıp kapatılır. Daha sonra fazların ayrılması için bir süre bekletilir ve alttaki faz musluk açılarak dikkatle başka bir kaba aktarılır. Gerekirse işlem saf çözücü konularak tekrarlanır.

KIMYASAL DENGE VE KÜTLELERİN ETKİMESİ YASASI

DENEME - 12 : (Kimiyasal denge üzerine seyreltmenin etkisi). Bir tüpe 5 – 6 damla demir(III) klorür çözeltisi ile 1 – 2 mL su koyunuz, çalkalayınız ve üzerine 5 – 6 damla amonyum veya potasyum rodanür çözeltisi katınız: Kan kırmızısı bir renk ortaya çıkar.

Tüpteki çözeltiyi bir behere aktarınız ve kırmızı renk kayboluncaya kadar su ile seyreltiniz.

Açıklama : Çözeltinini koyu kırmızı rengi,

\[\text{Fe}^{3+} + \text{SCN}^- \rightarrow \text{Fe(SCN)}^2+ \]

dengesi uyarmıca Fe(SCN)²⁺ kompleks iyonunun oluşumundan kaynaklanır. Çözeltinin seyreltilmesi durumunda denge soi yan lehine döner, yanı oluşan kırmızı renkli bileşik kendi- ni oluştururan bileşenlere ayrışır. Bu olaya disosiyasyon adı verilir ve genellikle disosiyasyon oranı seyreltme ile birlikte artar.

Seyreltme sonucunda kırmızı rengin kaybolmasına ve ele geçen çözeltinin rengini başlangıçta kullandığınız belirteç çözeltilerinin renkleri ile karşılaştırarak açıklayınız.

DENEME - 13 : (Kimiyasal denge üzerine konsantrasyon değişimi- nin etkisi). Seyreltikler kırmızı rengi giderilmiş çözeltiden üç tüpe ikişer mL koyunuz. Tüplerden birincisine 1 mL amonyum veya potasyum ro- danür çözeltisi ve ikincisine de 1 mL demir(III) klorür çözeltisi katınız: Her iki tüpte de kırmızı rengin yeniden ortaya çıktığı görülür. Üçüncü tüpe 1 mL derişik HCl çözeltisi katınız ve oluşan rengi seyreltilmiş çözeltinin rengi ile karşılaştırarak nedenini açıklayınız.
Açıklama: Yukardaki deneye kütlelerin etkimesi yasasını uygularsak,

\[
K = \frac{[\text{Fe(SCN)}^{2+}]}{[\text{Fe}^{3+}][\text{SCN}^-]}
\]

olur. Ortamdaki \(\text{Fe}^{3+}\) veya \(\text{SCN}^-\) iyonu konsantrasyonu arttırdığı zaman kesin pay-
dasımın değeri büyük. Bu durumda denge sabiti plan K'nın değerinin değişmemesi için pay-
dadaki öteki iyonun konsantrasyonu azalmalı ve paydaki iyonun konsantrasyonu da art-
malıdır. Bu durumu sağlamak için ortama \(\text{SCN}^-\) iyonları katıldığıda \(\text{Fe}^{3+}\) iyonları, \(\text{Fe}^{3+}\) iyonu katıldığında \(\text{SCN}^-\) iyonları \(\text{Fe(SCN)}^{2+}\) biçiminde birbirleriyle birleşirler. Bunun sonu-
cunda denge sağ yana döner ve ortamdaki \(\text{Fe(SCN)}^{2+}\) konsantrasyonunun artması sonu-
cunda kırmızı renk yeniden ortaya çıkar.

KIMYASAL REAKSIYONLARIN HIZLARI

Homojen reaksiyonların hızları

DENEME - 14: (Reaksiyon hızı üzerine reaksiyona giren maddele-
rin konsantrasyonlarının etkisi). Dört tane küçük beher alıp bunların
her birine 10 mL % 2,5 luk sulfat asidi çözeltisi ile aşağıdaki oranlarda
% 5 lik sodyum tiosulfat çözeltisi ve su koynuz:

<table>
<thead>
<tr>
<th>Beher No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfat asidi (mL)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Sodyum tiosulfat (mL)</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Su (mL)</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Çözeltilerin hacimlerini olanak oranında duyarlı olarak bir derece-
li pipet veya daha iyisi bir бюret yardımıyla ölçünüz. Karışımı en son
sodyum tiosulfat çözeltisini katınız ve bir saniyeli saat yardımıyla
cözeltinin katılmasından ilk bulanıklığın ortaya çıkısına kadar geçen za-
manı saniye olarak saptayınız. Deney sonuçlarını aşağıdaki gibi bir
çizelgede toplayınız.

Sodyum tiosulfatın sulfat asidi ile reaksiyonu

<table>
<thead>
<tr>
<th>Deney No.</th>
<th>Çözelti hacmi (mL)</th>
<th>Su hacmi (mL)</th>
<th>Toplam hacim (mL)</th>
<th>Zaman (saniye)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂SO₄</td>
<td>Na₂S₂O₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reaksiyon denlemini yazınız ve bulanıklığın nedenini açıklayınız. Sodyum tiyosulfat konsantrasyonunun denemeden denemeye nasıl değiştiğini ve reaksiyon hızının buna nasıl bağlı olduğunu inceleyiniz. Bulanıklığın ortaya çıkma zamanının sodyum tiyosulfat konsantrasyonuna karşı değişiminin grafiğini çiziniz.

DENEME - 15: (Reaksiyon hızı üzerine reaksiyona giren maddelerin konsantrasyonlarının etkisi). Litresinde 1 g sodyum sülfat 0,95 mL % 96 lik sülfat asidi ve 0,1 g nişasta içeren bir çözelti hazırlayınız. Dört tane 100 mL lik beher alarak bunları her birine hazırladığınız çözeltiden 20 mL koyunuz. Beherlere aşağıdaki oranlarda potasyum iyodat ve su koyunuz. Gerekli potasyum iyodat çözeltisi 1 L suda 3,9 potasyum iyodat çözülecek hazırlanır.

<table>
<thead>
<tr>
<th>Beher No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asılı sodyum sülfat (mL)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Potasyum iyodat (mL)</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Su (mL)</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Çözeltilerin hacimlerini olanak oranında duyarlı olarak bir dereceli pipet veya daha iyisini buret yardımıyla ölçünüz. Karıştırma en son potasyum iyodat çözeltisini katınız ve bir saniyeli saat yardımıyla çözeltinin katılmasıyla ilk renklenmenin ortaya çıkmasına kadar geçen süreyi saniye olarak saptayınız. Deney sonuçlarını aşağıdaki gibi bir çizelgede toplayınız.

Potasyum iyodatın sodyum sülfit ile reaksiyonu

<table>
<thead>
<tr>
<th>Deney No.</th>
<th>Çözelti hacmi (mL)</th>
<th>Su hacmi (mL)</th>
<th>Toplam hacmi (mL)</th>
<th>Zaman (saniye)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>KIO₃</td>
<td>Na₂SO₃</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DENEME - 16: (Reaksiyon hızı üzerine sıcaklığın etkisi). Üç tane küçük beherin her birine 10 mL % 2,5 luk sülfat asidi çözeltisi ve başka
uç tane küçük beherin her birine 10 mL % 5 lik sodyum tiyosülfat çözeltisi koyunuz. Hacmları olanak oranında duyarlı olarak bir dereceli pipet, küçük ölçü silindiri veya büret kullanarak ölçünüz. İlk denemeyi oda sıcaklığında yapınız (çözeltilerin sıcaklığını bir termometre ile ölçünüz) ve sülfat asidi çözeltisini sodyum tiyosülfat çözeltisi içine hızla boşaltarak ilk bulanıklığın ortaya çıkma süresini bir saniyeli saat yardımcıla saptayınız. İkinci denemeyi oda sıcaklığının 10 °C üzerinde ve üçüncü denemeyi de oda sıcaklığının 20 °C üzerinde yapınız. Bunun için birbirine karıştıracağınız çözelti çiftlerini bu sıcaklıklara ayarlanmış birer su banyosunda 15 – 20 dakika tutunuz, karıştırmadan önce sıcaklıklarını bir termometre ile ölçünüz ve birbirine karıştırarak ilk bulanıklığın ortaya çıktığı süreyi saptayınız. Deney sonuçlarını aşağıdaki gibi bir çizelgede toplayınız.

Sodyum tiyosülfatın sülfat asidi ile reaksiyonu üzerine sıcaklığın etkisi

<table>
<thead>
<tr>
<th>Deney No.</th>
<th>Çözelti hacmi (mL)</th>
<th>Sıcaklık (°C)</th>
<th>Zaman (saniye)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₂SO₄</td>
<td>Na₂S₂O₃</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reaksiyon hızının sıcaklığa bağlı olarak nasıl değiştiğini inceleyiniz ve bulanıklığın ortaya çıkma süresinin sıcaklığa bağlı olarak değişiminin grafiğini çiziniz.

Heterojen reaksiyonların hızları

DENEME - 17: Bir porselen havanda 0,01 g susuz bakır sülfat ile birkaç potasyum iyodür kristalini iyice ezerek karıştırınız ve olayı gözleyiniz. Ardından karışma birkaç damla su katınız ve gözlenen olayı reaksiyon denklemini yazarak açıklayınız.

DENEME - 18: (Aluminyum ile iyot arasındaki reaksiyonu suyun katalitik etkisi). Bir tüpe biraz aluminyum tozu ile iyice ezilmiş elementel iyot koyarak bir cam çubukla karıştırın: Herhangi bir reaksiyon olmaz. Tüpe bir damla su katarak suyun reaksiyon hızına etkisini gözleyin.

Reaksiyon denklemini yazınız ve gözlemleriniizi belirtiniz.
DENEME - 19: (Heterojen sistemlerde reaksiyon hızı üzerine reaksiyon bileşenlerinin yüzey alanının etkisi). Yaklaşık 1 cm uzunluğunda iki tane tebeşir parçası alın. Bunlardan birini bir süzgeç kağıdı üzerinde bir cam çubukla iyice toz ederek bir tüpe koyun. Öteki tebeşir parçasını da olduğu gibi bir başka tüpe koyun. Aynı anda her iki tüpe de damla damla derişik klorür asidi \(d = 1,19 \text{ g/mL}\) katarak tebeşirlerin tamamının çözünmesini gözleyiniz. (Aynı anda katmayı sağlamak için asit çözeltisi tüplere iki ayrı kişi tarafindan katılabilir).

Reaksiyon denklemini yazınız ve farklı çözünme hızlarının nedenini belirtiniz.

ÇÖZÜNÜRLÜK ÇARPIMI VE ÇÖKME

Kalitatif Analiz Uygulaması; Sayfa: 70 – 81.

Bir maddenin bir çözeltiden tam olarak çöktürülerek ayrılmış isteniyorsa, bir beher veya tüp içindeki çözeltiye belirteç çözeltisi (çöktürücü) damla damla ve sürekli karıştırılarak en son damla bir çökelti oluşturmacıya kadar katılır. Bundan sonra bütün çökeltinin dibe oturması için bir süre beklenir, üstteki saydam çözeltiye bir damla belirteç çözeltisi kabin iç yüzünden dikkatle ve yavaşca akıtırılır. Çökme tamamlanmış ise belirteç çözeltisinin çevresinde bir bulunan olmaz. Genellikle belirteç çözeltisinin 1 mL kadar fazlası katılır. Belirticidein aşırısının katılması bazı durumlarda çöktelin yeniden çözünmesine neden olabilir.

DENEME - 20: Bir beherde baryum klorür (BaCl\(_2\)) çözeltisi hazırlanız ve bu çözeltideki baryumun tümünü sodyum karbonat
(\(\text{Na}_2\text{CO}_3\)) çözeltisi yardımıyla yukarda anlatılan biçimde çökütrek çözmenin tamamlanıp tamamlanmadığını denetleyiniz.

DENEME - 21: Bir bakır sülfat (\(\text{Cu}_2\text{SO}_4\)) çözeltisi üzerine damla damla amonyak (\(\text{NH}_3\)) çözeltisi katınız: Açık mavi renkli bakır(II) hidroksit [\(\text{Cu(OH)}_2\)] çökeltisi oluşur. Amonyak çözeltisi katmayı sürdürüünüz: Çökelti koyu mavi renkli tetraamminbakır(II) kompleksi oluşturarak çözünür.

Bu denemedeki reaksiyonların denklemlerini yazınız.

Genellikle çökeltinin çökütrekü belirteğ ile kompleks oluşturduğu durumlarda belirtiçin aşırısının katılmasından kaçınılmalıdır.

DENEME - 22: Bir tüpte bulunan baryum klorür çözeltisi üzerine potasyum dikromat (\(\text{K}_2\text{Cr}_2\text{O}_7\)) çözeltisi katınız: Çökmesi beklenen baryum dikromat yerine baryum kromat (\(\text{BaCrO}_4\)) çöker. Çökeltinin üzerindeki çözeltiyi dikkatle aktarınız ve çökeltinin üzerine seyreltik klorür asidi çözeltisi katınız: Çökelti çözünür. Deneme sırasındaki renk değişimlerini gözleyiniz.

Açıklama: Dikromat iyonu ile su arasında,

\[
\text{Cr}_2\text{O}_7^{2-} + \text{H}_2\text{O} \rightleftharpoons 2\text{CrO}_4^{2-} + 2\text{H}^+
\]

(Turuncu - karnuzi) (Sarı)

dengesi vardır ve bu denge sol yanın lehinedir. Baryum dikromat çok çözünür bir madde- dir. Buna karşılık, baryum kromatın çözünürlük çarpımı çok küçüktür (\(K_p = 1,2.10^{-10}\)). Bu nedenle, dengede bulunan çok küçük kromat iyonu konsantrasyonu bile baryum kromatın çözünürlük çarpmına ulaşılması için yeterlidir ve baryum kromat çökeltisi oluşur. Çökeltinin oluşumu sonucunda ortamdaki kromat iyonu konsantrasyonu azaldığında denge sağ yana doner ve bu da ortamdaki \(\text{H}^+\) iyonu konsantrasyonunun yani asitliğin artmasına neden olur. Klorür asidi çözeltiinde kütüle rin etkimesi yasası uyarınca yukarıdaki denge o kadar sola kayar ki baryum kromatın çözünürlük çarpmına ulaşılamaz. Asetik asit durumunda bu asidin verofigeçii \(\text{H}^+\) iyonu konsantrasyonu baryum kromatın çözmesine engel olacak düzeyde değildir.

\[
2\text{Ba}^{2+} + \text{Cr}_2\text{O}_7^{2-} + \text{H}_2\text{O} \rightarrow 2\text{BaCrO}_4 + 2\text{H}^+
\]

denklemi uyarınca çökme sürdükçe ortamdaki \(\text{H}^+\) iyonu konsantrasyonu sürekli olarak artar ve bir noktadan sonra baryum kromatın çözmesine engel olur. Çökenin tamamlanamay bilmesi için ortama sodyum asetat katılarak \(\text{H}^+\) iyonları tamponlanmalı yani ortamdan alınmalıdır.

Açıklama : Kalsiyum sulfatın çözünürlük çarpımı \(K_S = 9,1 \times 10^{-6} \) ve baryum sulfatın çözünürlük çarpımı da \(K_b = 1,1 \times 10^{-10} \) dur. Doymuş kalsiyum sulfat çözeltisindeki sulfat iyonu konsantrasyonunu hesaplayalım. Çözünürlük çarpımından

\[
K_S = [\text{Ca}^{2+}] \cdot [\text{SO}_4^{2-}] = 9,1 \times 10^{-6}
\]
yazılabilir ve doymuş çözeltide \([\text{Ca}^{2+}] = [\text{SO}_4^{2-}]\) olduğundan,

\[
[\text{SO}_4^{2-}] = \sqrt{9,1 \times 10^{-6}} = 3,0 \times 10^{-3} \text{ mol/L}
\]
bulunur. Baryum sulfatın çökmeye başladığı andaki sulfat iyonu konsantrasyonu da benzer yoldan,

\[
[\text{SO}_4^{2-}] = \sqrt{1,1 \times 10^{-10}} = 1,0 \times 10^{-5} \text{ mol/L}
\]
olarak bulunur. Görüldüğü gibi, kalsiyum sulfatın sağladığı sulfat iyonu konsantrasyonu baryum sulfatın çökmesi için gerekli olan sulfat iyonu konsantrasyonundan çok daha büyüktür. Buña göre, jips suyuunda baryum sulfatın çözünürlük çarpımına ulaşılır ve bar-
yum sulfat çöker.

DENEME - 24 : Bir tüpe 1 mL kalsiyum klorür çözeltisi koyunuz ve üzerine 1,5 mL sodyum sulfat çözeltisi katınız. Oluşan kalsiyum sulfatın çökmesi için 2 – 3 dakika bekleyiniz ve santrifüjleyiniz. Bir damla etrafınıza üstteki saydam çözeltiden iki ayrı tüpe birer mL alınız. Tüplerden birine 2 – 3 damla sodyum sulfat çözeltisi katarak çökmenin tamamlanmadığını denetleyiniz. Öteki tüpe 2 – 3 damla amonyum oksalat çözeltisi katınız: Beyaz bir çökelti oluşur.

Kalsiyum sulfatın çözünürlük çarpımı \(K_S = 9,1 \times 10^{-6} \) ve kalsiyum oksalatın (CaC\(_2\)O\(_4\)) çözünürlük çarpımı da \(K_a = 2,3 \times 10^{-9} \) dur. Bu değerleri de göz önünde alarak aşağıdaki soruları yanıtlayınız.

1. En son çöken maddenin adı ve formülü nedir?
2. Denemedeki reaksiyonlara ilişkin iyonik denklemleri yazınız.

3. Çözeltideki Ca\(^{2+}\) iyonunun kalsiyum sülfat biçiminde uzaklaştırılmasından sonra kalan çözeltiye oksalat (C\(_2\)O\(_4^{2-}\)) iyonları katıldığında yeni bir çökeltinin oluşumu çözünürlik çarpımlarına dayanarak açıklayınız.

4. Bir çözeltideki Ca\(^{2+}\) iyonlarının çöktürülerek uzaklaştırılmasında sodyum sülfat ve amonyum oksalat çözeltilerinden hangisi daha uygundur.

DENEME - 25: (Suda çözünmeyen bir bileşikten suda çözünmeyen başka bir bileşliğin hazırlanması). Bir tupe 1 mL kursun(II) nitrat çözeltisi koyup üzerine damla damla sodyum sülfat çözeltisi katarak kursun sülfatı (PbSO\(_4\)) çöktürünüz. Bir süre çökeltinin dibe oturmasını bekleyiniz veya santrifüjleyerek üstteki çözeltiyi atınız. Çökelti üzerinden 3 – 4 damla potasyum kromat (K\(_2\)CrO\(_4\)) çözeltisi katıp bir cam çubukla karıştırınız ve çökeltinin rengindeki değişimi gözleyiniz.

Kursun sülfatının (PbSO\(_4\)) çözünürlik çarpımı \(K_s = 1.6 \times 10^{-8} \) ve kursun kromatının (PbCrO\(_4\)) çözünürlik çarpımı da \(K_s = 1.8 \times 10^{-14} \) dür. Bu değerleri de göz önüne alarak aşağıdaki soruları yanıtlayınız.

1. Oluşan bileşigin adı ve formülü nedir?
2. Oluşan reaksiyonun denklemini yazınız.
3. Bir çökeltinin başka bir çökeltiye dönüştürülebilmesi için bunların çözünürlik çarpımları arasında olması gereken ilişkiyi belirtiniz.

DENEME - 26: (Kimyasal reaksiyon yoluyla çökeltilerin çözülmesi). İki ayrı tupe birer mL magnezyum(II) tuzu çözeltisi koyunuz ve damla damla sodyum hidroksit çözeltisi katarak magnezyum hidroksidi [Mg(OH)\(_2\)] çöktürünüz. Ėüplerden birincisine damla damla 2 M HCl çözeltisi katınız ve çökeltinin tümünün çözünmesi için gerekli olan damla sayısını sayınız. Öteki tupe benzer biçimde 2 M NH\(_4\)Cl çözeltisi katınız ve damla sayısını sayınız. Hangi durumda magnezyum hidroksit çökeltilisinin daha kolay çözündüğünü belirtiniz ve denemedeki reaksiyonların denklemlerini yazınız. Denemenin sonuç vermesi için başlangıçta her iki tupe de eşit sayıda sodyum hidroksit damlasıın katılması gereklidir. Bunun nedenini araştırınız.
ÇÖKELTİLERİN ÇÖZELTİLERDEN AYRILMASI

*Kalitativ Analiz Uygulaması; Sayfa: 121 - 130.

Aktarma (Dekantasyon)

DENEME - 27: Bir beherde bulunan baryum klorür çözeltisi üzerine sodıyum karbonat çözeltisi katınız ve oluşan çökelti akıktarma yoluyla baryum klorürden temizleyiniz. İşlemin bitişi, son olarak aktarma edilen çözeltinin sodıyum karbonat ile bir çökelti vermemesinden anlaşılabilir. Her aktarmadan sonra çözeltiden aldiğınız bir örneği bir tüpte sodıyum karbonat çözeltisi ile kontrol ediniz.

Süzme ve çökeltinin yıkanması

DENEME - 28: Bir kurşun(II) tuzu çözeltisi üzerine potasyum dikromat çözeltisi katınız. Oluşan sarı çökeltiyi süzünüz ve süzüntü renksiz oluncaya kadar su ile yıkayınız. Bu arada yalnız çökeltiyi değil, süzgeç kağıdını da iyice yıkayınız. Bunun için, pisetle bir kaça kez süzgecin üst
kenarı boyunca huninin çevresinden su püskürtünüz. Böylece, akan yıkama suları süzgecin bütün kütlesinden geçer ve üst kenardaki potasyum dikromat ve kuruşun(II) tuzu artıklarını temizler.

Genel olarak, yıkama işlemi daima soğuk çözücü ile yapılır. Sıcak çözücü ile yıkamada, maddelerin çözünürülüklerinin sıcaklıkla birlikte artması nedeniyle çökelti kayıpları ortaya çıkar.

KRİSTALLENME

Kalitatif Analiz Uygulaması; Sayfa : 58 – 69.

DENEME - 30: Kuru bir deneme tüpüne sodyum tiyosülfat (Na₂S₂O₃·5H₂O) kristalleri koyarak çok yavaş bir biçimde ıstatınız: Sodyum tiyosülfat kendi kristal suyunda çözünür. Tüpün ağzını bir pamuktan kapatıp şiddetle çalaklayarak oda sıcaklığına kadar soğutunuz: Sodyum tiyosülfat katlaşır. Yaniden saydam bir çözelti oluşuncaya kadar tüp ıstatınız, soğutunuz ve içine küçük bir sodyum tiyosülfat kristali atınız: Çözeltilerden birer katılaşır. Denemedede gözlenen olayları sodyum tiyosülfatın çözünürlik eğrisini de göz öne alarak açıklayınız.

DENEME - 31: Bir miktar potasyum klorat (KClO₃) üzerinde 5 – 6 mL su katarak kaynayana kadar ıstatınız. Eğer potasyum kloratın hepsini çözünürse bir miktar daha kati madde katınız. Bu çözeltiyi önceden kaynar su süzülecek ıstatmış bir süzgeçten süzünüz ve bu saydam süzüntüyü (potasyum kloratın sıcak daşınmış çözeltisi) dıştan musluk suyu altında soğutunuz: Potasyum klorat kristalleri ayrılr.

Açıklama: Çözeltili soğutulduğunda potasyum kloratın çözünürlüğü azalaçağından, oda sıcaklığında daşınmış için gerekli olanlarda fazla olan madde çözeltiden ayrılr. 100 °C de daşınmış çözeltide 100 g suda 57 g KClO₃ çözünmüş olarak bulunur, 20 °C de ise 100 g suda 7,4 g KClO₃ çözünmüş olarak kalacaktr. Çözeltilinin 100 °C den 20 °C ye soğutulması ile 100 g su için 57,0 – 7,4 = 49,6 g KClO₃ kristallener ortamdan ayrılr.
DENEME - 32: (Potasyum sülфat ve potasyum dikromatın ayrılması). 2,5 g potasyum sülфat (K₂SO₄) ile 10 g potasyum dikromati (K₂Cr₂O₇) iyice karıştırınız ve 25 mL kaynar suda çözünüz. Bu çözeltiyi kendi haline bırakarak oda sıcaklığında kadar soğutunuz. Oluşan K₂Cr₂O₇ kristallerini süzünüz, süzgeç kağıdı arasında kurutunuz ve tartınız. Bulduğunuz miktarı hesaplama yoluya bulacağınız çökmesi gereken miktar ile karşılaştırınız.

Açıklama: Çözünürlik eğrilerinden görüldüğü gibi 100 °C de 25 g suda 102,0/4 = 25,5 g K₂Cr₂O₇ ve 24,1/4 = 6,025 g K₂SO₄ çözünür. Buna göre, elde ettiğimiz çözelti her iki madde için de doymuş değildir ve bir çökme olmaz. Çözelti 20 °C ye soğutulduğunda, bu sıcaklıkta 25 g suda 13,1/4 = 3,275 g K₂Cr₂O₇ ve 11,11/4 = 2,777 g K₂SO₄ çözünmüs olarak bulunabilir. Buna göre, çözeltide 10 g K₂Cr₂O₇ bulunduğundan 20 °C de bu madde için doygunluk sınırı aşılımsız olduğundan 10,000 – 3,275 = 6,725 g K₂Cr₂O₇ çöker. Çözelte bulunan K₂SO₄ miktarı (2,5 g) 20 °C deki doygunluk miktarından küçük olduğundan K₂SO₄ çökmez. Böylece aynı çözeltide bulunan iki madde çözünürlik farklarından yararlanlarak birbirinden ayrılmış olur. Bu tür ayırma işlemlerine fraksiyonlu kristallendirme adı verilir.

Şekil - 9: K₂Cr₂O₇ ve K₂SO₄ ön çözünürlik eğrileri.

DENEME - 33: (Sodyum nittrattan potasyum nitrat elde edilmesi). Bir behere 25 mL su koyunuz ve bu suda 12 g sodyum nitratı ışıtan çözünüz. Çözeltiye eşdeğer miktarda potasyum klorür katınız. Beheri bir saat camı ile kapatıp bir anyanlı tel üzerinde küçük bir alevle kristaller ayrılmaya başlayıncaya kadar ışıtınız. Sıcak çözeltiyi hızlı bir porselen kapsülle aktarak kristallenmeye bırakınız. Beherde kalan ve kapsülde oluşan kristallerin biçimlerini bir mikroskop altında inceleyiniz. Porselen kapsülde oluşan kristalleri süzünüz, havada kurutunuz ve
tartarak verimi hesaplayınız. Aşağıdaki çözünürlik çizelgesi yardımıyla çözeltiden oluşan tuzların çözme koşullarını açıklayınız.

ÇİZELGE - 1

<table>
<thead>
<tr>
<th>Bileşik</th>
<th>100 g sudaki çözünürlik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 °C</td>
</tr>
<tr>
<td>Potasyum nitrat</td>
<td>21</td>
</tr>
<tr>
<td>Sodyum klorür</td>
<td>36</td>
</tr>
<tr>
<td>Potasyum klorür</td>
<td>31</td>
</tr>
<tr>
<td>Sodyum nitrat</td>
<td>81</td>
</tr>
</tbody>
</table>

ASİTLER VE BAZLAR

ASİTLER, BAZLAR VE İNDİKATÖRLER

DENEME - 34: Seyreltik klorür asidi, seyreltik sulfit asidi ve seyreltik asetik asit çözeltilerine birer damla metil kirmızısı indikatör çözeltisi damlatınız: Renk kirmızı kalır (indikatörün asit rengi). Aynı denemeleri fenolftalein ile tekrarlayarak indikatörün rensiz kaldığini ve turnusol ile tekrarlayarak indikatörün kirmızı olduğunu görünüz.

DENEME - 35: Seyreltik sodyum hidroksit ve seyreltik amonyak çözeltilerine birer damla metil kirmızısı indikatör çözeltisi damlatınız: Renk sarıya dönner (indikatörün bazık rengi). Aynı denemeleri fenolftalein ile tekrarlayarak rengin kırmızı olduğunu ve turnusol ile tekrarlayarak rengin mavi olduğunu görünüz.

DENEME - 36: Derişik bir amonyum klorur \((\text{NH}_4\text{Cl})\) çözeltisi hazırlayınız ve bunu dört tüpe böleerek her birinin üzerine sırasıyla 1 – 2 şer damla fenolftalein, turnusol (litmus), metil kirmızısı ve metiloranj indikatör çözeltilerinden katarak çözeltinin yaklaşık pH mı saptayınız.
DENEME - 37: Seyreltik sodyum hidroksit çözeltisini fenolftalein indikatörlüğünde seyreltik klorür veya sülfat asidi çözeltisi ile nötralleştiriniz. Bunun için, bir tüpte bulunan 1 – 2 mL sodyum hidroksit çözeltisine bir damla fenolftalein indikatör çözeltisi koyunuz ve çözelti renksizleşinceye kadar damla damla seyreltik asit çözeltisi katınız. Çözeltilerin seyreltik olmalarına karşı şiddetli bir ısınma olduğunu gözleyiniz.

Derişik asitler ile bazları birbirine katmayınız. Oluşan nötralleleşme reaksiyonunun şiddetinden ve şişelik çıkan ısının büyüklüğünden dolayı sıvi sıçramaları olabilir.

DENEME - 38: Bir tüp içinde bulunan 1 mL su üzerine başka bir tüpten aynı hacımda derişik sülfat asidi katınız: Karışım şiddetle ısınır.*

Seyreltik sülfat asidi çözeltisi hazırlananken, derişik sülfat asidi suyun içine yavaş yavaş ve karışıtırlar katılmalı, bunun karşıtını yapmakta, yani aside su katmaktan daima kaçınılmalıdır. Çünkü, hidratasyon ısınının büyüklüğü nedeniyle suyun kaynaması sıçramaları neden olur. Oysa bunun karşısında, sülfat asidinin kaynama noktası yüksek olduğundan sıçrama olasılığı daha azdır.

DENEME - 39: (Sülfat asidinin organik maddeler üzerine etkisi).

(a) Bir tüpte bulunan az miktardaki derişik sülfat asidi içine ince bir tahta çubuk batırınız. Gözlenen olayı açıklayınız.

(b) Derişik sülfat asidini yari yarıya seyrelterek 2 – 3 mL çözelti hazırlayınız. Bir cam çubuğun ucunu bu çözelti ile ıslatarak beyaz bir kağıt üzerine bir işaret yapınız. Kağıdı kuruyuncaya kadar dikkatlice ısıtırınız. Yukardaki denemeler sülfat asidinin hangi özelliğini gösterir?

* Bu deneme bir termometre kullanılarak da yapılabilir. Bu durumda, bir behere 10 – 15 mL su konulur ve sıcaklığı bir termometre yardımcıla ölçülür. Ardından termometre çıkartılgadan 2 mL % 96 lik sülfat asidi katılır, çözelti termometre ile karşılaştırılır ve sıcaklık yeniden ölçülür.
(c) 50 mL lik bir behere 10 g pudra şekerli koyunuz ve koyu bir pasta oluşuncaya kadar su ile ısıtınız ve ardından 3 – 5 mL derişik sülfat asidi katarak bir cam çubuk ile hızla karıştırınız. Olayı gözleyiniz ve hangi gazın çıktığını araştırınız.

DENEME - 40: (Sülfat asidinin ametaller üzerine etkisi). İki deneme tüpünün her birine 2 – 3 mL % 96 lik sülfat asidi koyunuz. Tüplerden birine küçük bir parça kükürt ve ötekine de küçük bir parça kömür koyarak dikkatle ısıtınız. Oluşan reaksiyonları gözleyiniz ve reaksiyon denklemlerini yazınız.

\[\text{Mg}^{2+} + 2\text{OH}^- \rightarrow \text{Mg(OH)}_2 \]

\[\text{Mg(OH)}_2 + 2\text{H}^+ \rightarrow \text{Mg}^{2+} + 2\text{H}_2\text{O} \]

Öteki reaksiyonları da formüllendiriniz.

AMFOTERLİK

DENEME - 43: Biraz aluminyum klorür çözeltisi üzerine seyreltik sodyum hidroksit çözeltisi katınız: Peltsemi görünüşte ve kuşbaşı biçiminde aluminyum hidroksit çöker.
Al\(^{3+}\) + 3OH\(^{-}\) → Al(OH)\(_3\)

Al(OH)\(_3\) + 3H\(^{+}\) → Al\(^{3+}\) + 3H\(_2\)O

Çökeltinin öteki bölümü üzerine damla damla sodyum hidroksit çözeltisinin aşırısını katınız: Çökelti çözünür.

Al(OH)\(_3\) + OH\(^{-}\) ⇄ [Al(OH)\(_4\)]\(^{-}\)

veya Al(OH)\(_3\) + OH\(^{-}\) ⇄ AlO\(_2\)\(^{-}\) + 2H\(_2\)O

Elde ettığiniz aluminat çözeltisine aşırı miktarda katı amonyum klorür katarak kaynatınız: Alüminyum hidroksidin bütünü yeniden çöker.

[Al(OH)\(_4\)]\(^{-}\) + NH\(_4\)\(^{+}\) → Al(OH)\(_3\) + NH\(_3\) + H\(_2\)O

veya AlO\(_2\)\(^{-}\) + NH\(_4\)\(^{+}\) + H\(_2\)O → Al(OH)\(_3\) + NH\(_3\)

Alüminyum hidroksit gibi, hem asitleri ve hem de bazları nötralleştirme özelliğine sahip olan maddelere amfoter maddeler adı verilir. Başka bir deyimle, bazı oksit ve hidroksitler çözeltinin pHına bağlı olarak asit veya baz olarak davranışlar.

DENEME - 44: Kalay(II) klorür çözeltisine yavaş yavaş sodyum hidroksit çözeltisi katınız: Beyaz renkli kalay(II) hidroksit çöker. Sodyum hidroksit katmayı sürdürünüz: Çökelti stannit vererek çözünür.

Sn\(^{2+}\) + 2OH\(^{-}\) → Sn(OH)\(_2\)

Sn(OH)\(_2\) + OH\(^{-}\) → [Sn(OH)\(_3\)]\(^{-}\)

Stannit çok kolaylıkla stannat biçimine geçebildiğinden indirgen olarak geniş oranda kullanılır.
DENEME - 45: Bir kürşun(II) tuzu çözeltisi üzerine damla damla sodyum hidrokisit çözeltisi katıncı: Beyaz renkli kürşun(II) hidrokisit çöker. Bu çöktü asıllerde ve sodyum hidrokisit çözeltisinin aşırısında ve özellikle ısıtıldığında plumbit vererek çözünür.

Bu denemedeki reaksiyonları formüllendiriniz.

\[
\begin{align*}
\text{Zn}^{2+} + 2\text{OH}^- & \rightarrow \text{Zn(OH)}_2 \\
\text{Zn(OH)}_2 + \text{OH}^- & \rightleftharpoons [\text{Zn(OH)}_3]^- \\
\text{Zn(OH)}_2 + 2\text{H}^+ & \rightleftharpoons \text{Zn}^{2+} + 2\text{H}_2\text{O}
\end{align*}
\]

Elde ettiğiniz ve çok kuvvetli bazik olmayan zinkat çözeltisini kaynatınız: (b) dengesinin sol yan lehine dönmesi sonucunda zinkat hidrolizlenir ve çinko hidroksidin bir bölümü yeniden çöker. (Sıcaklığın hidrolizi artıracı etkisi).

HIDROLİZ

Kalitatif Analiz Uygulamasi; Sayfa: 49 – 55.

DENEME - 47: Beş tane deneme tüpüne sırasıyla sodyum asetat (CH₃COONa), aluminyum sülfat [Al₂(SO₄)₃], sodyum karbonat (Na₂CO₃), amonyum karbonat [(NH₄)₂CO₃] ve potasyum klorür (KCl) çözeltisi soyun ve bu tüplerin hepsine bir kaç damla nötral litmus indikatör çözeltisi katın. Litmus çözeltisinin aldığı renkleri gözleyerek bu çözeltilerin hangilerinin asit ve hangilerinin baz özelliği gösterdiğini belirleyin.

1. Bu tuzlardan hangileri hidroliz olmaktadır?
2. Hidroliz olan tuzların hidrolizlenme biçimini (basit veya basamaklı) ve hidroliz reaksiyonları ile ilgili iyonik ve moleküller denklemleri yazınız.
3. Hidrolizi basamaklı olan tuzlar durumunda, yeterince derişik çözeltilerde ortam-
daki başlarda dene birinci basamağa ilişkin dene olduğundan ilk basamağa ilişkin denklemleri yazınız.

4. Aşağıdaki tuz çözeltilerinin pH lari konusunda genellemeler yapınız:
 (a) Kuvvetli asitler ile kuvvetli bazlardan oluşan tuzlar.
 (b) Kuvvetli asitler ile zayıf bazlardan oluşan tuzlar.
 (c) Zayıf asitler ile kuvvetli bazlardan oluşan tuzlar.
 (d) Zayıf asitler ile zayıf bazlardan oluşan tuzlar.

5. Denemede kullanıdığınız tuzların her birinin hangi sınıfa girdiğini belirtiniz.

DENEME - 48 : (Tuzun hidroliz derecesi üzerine tuzu oluşturulan asit ve bazın kuvvetinin etkisi). İki deneme tüpünü üçte ikisine kadar suyla doldurun. Tümplerden birine bir küçük spatül yarımıyla biraz katı sodyum sülfid (Na₂SO₃) ve ötekine de aynı miktarına katı sodyum karbonat (Na₂CO₃) katarak bunları çözün. Daha sonra her iki çözeltiye de birer damla fenolf talein indikatör çözeltisi katarak oluşan rengi gözleyin.

1. Sodyum sülfid ve sodyum karbonatın hidrolizinin birinci basamaklarına ilişkin dengeleri yazınız.

2. Hangi tuzun çözeltisinde fenolf talein rengi daha şiddetlidir? Hangi çözeltide OH⁻ ionunu konsantrasyonu daha yüksektir?

DENEME - 49 : (Bir tuzun hidrolizi üzerine seyreltmenin etkisi). Bir deneme tüpüne 8 – 10 damla antimon(III) klorür (SbCl₃) çözeltisi koyun ve beyaz renkli bir çözelti oluşuncaya kadar damla damla su katın. Bu beyaz çözelti, antimon klorürün hidrolizinin ikinci basamağında oluşan bazik antimon klorürün [Sb(OH)₂Cl] bir molekül su kaybetmesi sonucu oluşan antimon oksiklorür (SbOCl) dür.

Karışlıma çözelti çözününçeye kadar damla damla klorür asidi çözeltisi katınız: Hidrolizin geri dönmesi sonucunda çözelti çözünür. Daha sonra bu çözeltiyi seyreltiniz: Beyaz renkli SbOCl yeniden çıkar.

1. Antimon klorürün hidrolizinin birinci ve ikinci basamaklarına ilişkin hidroliz dengelerini iyonik denklem biçiminde yazınız. Bu denklemler yardımcıla antimonil klorür oluşumu ile sonuçlanan toplam hidroliz denklemini çıkartınız.

2. Hidrolizin birinci basamağı için hidroliz sabitini veren denge sabiti ifadesini yazınız ve bu ifade yardımıyla seyreltmenin hidroliz derecesi üzerine olan etkisini gösteriniz.

4. Tuzların hidroliz derecesi üzerine seyreltmenin etkisine ilişkin olarak çıkardığınız genellemeleri yazınız.

5. Hangi tuzların hidrolizinin seyreltmeden etkilenmediğini belirtiniz.

DENEME - 50: (Bir tuzun hidrolizi üzerine sıcaklığın etkisi). Bir deneme tüpüne yarısına kadar seyreltik sodyum asetat (CH₃COONa) çözeltisi koyun. Çözeltiye bir damla fenolf talein indikatör çözeltisi katarak tüpü bir su banyosunda ısıtın ve indikatördeki renk değişimini gözleyin.

1. Sodyum asetatın hidrolizine ilişkin dengeyi iyonik biçimde yazınız.

2. Sodyum asetat çözeltisinin pH değeri 7 nin altında mıdır yoksa üzerinde midir?

3. Isıtma sonucunda fenolf taleinin renginin değişimesine OH⁻ iyonu konsantrasyonundaki nasıl bir değişiklik neden olmuştur?

4. Sıcaklık artışının hidroliz derecesi üzerine olan etkisini belirtiniz ve hidroliz dengesinin hangi yana doğru kaydığını açıklayınız.

TAMPON ÇÖZELTİLER

Kalitatif Analiz Uygulaması; Sayfa : 44 – 49.

Açıklama: Asetik asidin iyonlaşma dengesini göz önüne alalım:

\[\text{CH}_3\text{COOH} \rightleftharpoons \text{CH}_3\text{COO}^- + \text{H}^+ \]

Bu dengeye kütlelerin etkimesi yasasını uygularsak,

\[K = \frac{[\text{CH}_3\text{COO}^-] [\text{H}^+]}{[\text{CH}_3\text{COOH}]} \]
olur. Ortama sodyum asetat katıldığından asetat iyonu konsantrasyonu artacaktır. Denge sabiti K'nın değişmemesi için H^+ iyonu konsantrasyonu azalmalı veya CH₃COOH konsan-
trasyonu artmalıdır. Bunu sağlamak için, katılan asetat iyonları H^+ iyonları ile birleşerek
CH₃COOH oluşurur. Böylece, ortamdaki H^+ iyonlarının azalması asıtlığın azalmasına ve
dolayısıyla indikatörün renginin değişimine neden olur. Genellikle, zayıf bir asidin
çozeltisine bu asidin bir tuza katılmışa H^+ iyonu konsantrasyonu azalır ve bunun sonucu
olarak ortamın asıtlığı de azalmış olur.

DENEME - 52 : Bir deneme tüpüne yarısına kadar su ve 2 – 3
damla amonyak çözeltisi koyunuz ve üzerine 1 – 2 damla fenolftalein in-
dikatör çözeltisi katınız: Renk kırmızı olur (indikatörün bazı rengi). Daha
sonra karışım üzerine damla damla derişik amonyum klorür çözeltisi
katınız: Çözelti renksiz olur.

Ortamdaki dengeye katkıların etkisini yasasını uygulayarak indikatörün renginin
değişmesinin nedenini açıklayınız.

Genellikle, zayıf bir bazın çözeltisine bu bazın bir tuza katıldığında ortamdaki
OH^- iyonu konsantrasyonu azalır.

DENEME - 53 : 5 mL şeyreltik asetik asit çözeltisi ile 5 mL sod-
yum asetat çözeltisini karıştırarak eşit olarak iki tüpe bölünüz. Başka
iki tüpe de 5 er mL su koyunuz ve tüplerin dördüne de ikişer damla me-
tiloranj indikatör çözeltisi katınız.

(a) Su bulunan tüplerden birine bir kaç damla klorür asidi katınız:
Renk derhal kırmızı olur. Asetat tamponu içeren tüplerden birine
kırmızı renk ortaya çıkıncaya kadar damla damla klorür asidi katınız.
İkinci tüpe katkıınız klorür asidi miktarını birinci tüpe katkıınız mik-
tar ile karşılaştırınız.

(b) Su bulunan öteki tüpe bir kaç damla şeyreltik sodyum hidrok-
sit çözeltisi katınız: Çözeltinin rengi derhal sarıya döner. Asetat tampo-
nu içeren öteki tüpe sarı renk ortaya çıkıncaya kadar damla damla sod-
yum hidroksit çözeltisi katınız. İkinci tüpe katkıınız sodyum hidroksit
miktarını birinci tüpe katkıınız miktar ile karşılaştırınız.
Kalitatif Analiz Uygulaması; Sayfa: 95 – 120.

Kompleks anyonlar

DENEME - 54: (Potasyum tetraiyodobizmutat kompleksinin hazırlanması). Bir deneme tüpüne 0,5 – 1,0 mL bizmut nitrat çözeltisi koyunuz ve üzerine koyu kahverengi bizmut iyodür çözeltisi oluşuncaya kadar damla damla 0,5 M potasyum iyodür çözeltisi katınız. Daha sonra, potasyum iyodür çözeltisinin aşırısını katarak çözeltiyi çözünüz.

1. Elde ettiğiniz çözeltinin rengi nasıldır? Bu renk, K⁺, I⁻ veya Bi³⁺ iyonlarından herhangi birinin varlığına bağlı olabilir mi?
2. Bu iyonlardan hangisi kompleks oluşturucu bir iyon olabilir?
3. Oluşan kompleks bileşгинin formülünün KI₂Bi₄ olduğunu bilindiğine göre, koordinasyon formülünü yazınız.
4. Bizmut iyodür çözeltisinin oluşması ve bu çözeltinin potasyum iyodür aşırısında çözünmesi ile ilgili reaksiyon denklemlerini yazınız.
5. Oluşan kompleksin disosiyasyon denklemini yazınız.

Kompleks katyonlar

DENEME - 55: (Nikel heksaaamin kompleksinin hazırlanması). Bir deneme tüpüne 0,5 – 1,0 mL nikel(II) sülfat çözeltisi koyunuz ve üzerine aynı miktarda sodyum hidroksit çözeltisi katınız. Oluşan nikel(II) hidroksit çözeltisini santrifüjleyiniz ve üstteki sivi kısmını bir pipet yardımıyla uzaklaştırınız. Çöktü üzerine çözünmeyeye kadar damla damla % 25 lik amonyak çözeltisi katınız. Çözünme sırasındaki renk değişimini gözleyiniz ve ele geçen çözeltinin rengini nikel(II) sülfat çözeltisindeki Ni²⁺ iyonunun rengi ile karşılaştırınız.

1. Nikel(II) hidroksit çözeltisinin oluşmasına ilişkin reaksiyon denklemini yazınız.
3. Ele geçen çözeltinin rengi hangi iyodan kaynaklanır?
4. Oluşan kompleksin elektrolitik disosiyasyonuna ilişkin denklemi yazınız.
5. Nikel(II) hidroksit ile oluşan kompleksten hangisi daha kuvvetli bir elektrolittir?
Kompleks katyon ve kompleks anyon içeren bileşikler

DENEME - 56: Bir tüpe 0,5 mL potasyum ferrosiyonür (K₄[Fe(CN)₆]) çözeltisi koyunuz ve üzerine 1 mL nikel(II) sulfat çözeltisi katınız. Oluşan nikel ferrosiyonür çözeltisi çözünürinceye kadar damla damla % 25 lik amonyak çözeltisi katınız ve açık menekşe renkli [Ni(NH₃)₆]₂[Fe(CN)₆] kompleks tuzunun oluşumunu gözleyiniz.

1. Nikel ferrosiyonür oluşumuna ilişkin reaksiyon denklemini yazınız.
2. Nikel ferrosiyonür ile amonyağın reaksiyonuna ilişkin denklemini yazınız.
3. Nikel(II) sulfat ile aşırı amonyak arasındaki reaksiyonun genel denklemini yazınız.

Kompleks iyonların kararlılıkları

DENEME - 57: (Kompleks iyonların kararlılıklarının karşılaştırmaları). İki tane deneme tüpü alarak bunların her birine 0,5 mL gümüş nitrat çözeltisi ile aynı hacımda sodyum klorür çözeltisi koyunuz. Oluşan gümüş klorür çözeltisini çözmeğin için tüplerden birine damla damla % 25 lik amonyak çözeltisi ve ötekine de damla damla 1 M sodyum tiosulfat çözeltisi katanız. Daha sonra her iki tüpe de ikişer damla potasyum iyodür çözeltisi katarak dikkatle çalışmayın.

1. Gümüşün koordinasyon sayısının 2 olduğunu göz öne alarak gümüş klorür ile amonyak ve sodyum tiosulfat arasındaki reaksiyonların denklemlerini yazınız.
2. Oluşan kompleks bileşiklerin elektrolitik disosiyasyon denklemlerini yazınız.
4. Elde edilen gümüş komplekslerinden hangisi daha kararlıdır?

DENEME - 58: (Kompleks oluşumun yoluya demir(III) klorürün hidrolizinin önlenmesi). Demir(III) iyonu oksalik, tartarik ve sitrik asitler ve EDTA ile kararlı kompleksler oluşturur. Demir(III) iyonu halojenür iyonları ile de [FeX₄]⁻ biciminde kompleksler oluşturur. Bunların en kararlı olanı fluorür kompleksidir.

Bir tüpe demir(III) klorürün 0,1 M klorür asidiindeki % 1 lik çözeltisinden 0,5 mL koyup 5 mL su ile seyreltiniz ve 1 mL 6 M klorür
asidi çözeltisi katınız: Çözelti, [FeCl₄]⁻ kompleks iyonlarının oluşumu nedeniyle yeşilimsi sarı bir renk ahr. Bu çözeltiyi iki tüpe bölünüz. Tüplerden birine 1 mL % 25 lik amonyak çözeltisi katınız: Kırmızı -kahverengi demir(III) hidroksit çözeltisi oluşur. Öteki tüpe önce 1 mL % 10 luk tartarik asit çözeltisi ve ardından 1 mL % 25 lik amonyak çözeltisi katınız: Herhangi bir çözelti oluşmaz.

Tartarik asit yerine oksalik asit, sitrik asit, amonyum fluorür veya EDTA kullanılabilir.

1. Deneme sırasında oluşan reaksiyonların denklemlerini yazınız.
2. Bazı demir(III) komplekslerinin kararlılık sabitleri aşağıdaki çizelgede verildiğine göre, denemeyi komplekslerin kararlılıkları açısından açıklayınız.

ÇİZELGE - 2

Bazı demir(III) komplekslerinin 25 °C deki toplam kararlılık sabitleri

<table>
<thead>
<tr>
<th>Ligand</th>
<th>logβ₃₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oksalat iyonu</td>
<td>20,46 (n = 3 ; I = 0,5)</td>
</tr>
<tr>
<td>Tartarat iyonu</td>
<td>11,86 (n = 2)</td>
</tr>
<tr>
<td>Sitrat iyonu</td>
<td>11,56 (n = 1 ; I = 0,1)</td>
</tr>
<tr>
<td>Fluorür iyonu</td>
<td>11,66 (n = 3 ; I = 0,5)</td>
</tr>
<tr>
<td>Klorür iyonu</td>
<td>-0,79 (n = 4 ; I → 0)</td>
</tr>
<tr>
<td>EDTA iyonu</td>
<td>25,1 (n = 1 ; I = 0,1)</td>
</tr>
</tbody>
</table>

DENEME - 59 : (Elementlerin yükseltgenme basamaklarının değiştirilerek maskelenmesi). Kobalt(II) iyonu sulu - organik ortamda rodanür iyonları ile mavi renkli bir kompleks iyon oluşturur:

\[
[\text{Co(H₂O)₆}]^{2+} + n \text{SCN}^- \underset{\text{Co(SCN)}(\text{H₂O})₆} \overset{\text{n-H₂O}}{\rightleftharpoons} [\text{Co(SCN)}(\text{H₂O})₆-n]^{(n-2)-} + n\text{H₂O}
\]

Ortama demir(III) iyonları bulunduğunda, bunlar rodanür ile kırmızı renkli bir kompleks oluşturduklarından kobalt(II) iyonlarının bu reaksiyon yardımıyla gözlenmesi olanaksızlaşır. Buna karşılık, demir(III) iyonlarının kalay(II) klorür gibi uygun bir indirgen ile indirgenmesi duşumunda kobalt(II) iyonu demir(II) iyonları yanında gözlenebilir.

\[
2\text{Fe}^{3+} + \text{SnCl}_2 + 2\text{Cl}^- \rightleftharpoons 2\text{Fe}^{2+} + \text{SnCl}_4
\]
Bir deneme tüpüne 3 - 4 damla % 0,1 lik kobalt(II) klorür çözeltisi, 3 - 4 damla 0,1 M klorür asidi çözeltisindeki % 0,1 lik demir(III) klorür çözeltisi, 2 - 3 damla % 50 lik sülfat asidi çözeltisi, 1 mL su, 3 - 4 mL aseton ve 1 mL % 10 lik amonyum rodanür çözeltisi koyunuz: Kırıl kahverengi bir renk oluşur. Bu çözeltiye kalay(II) klorürün 1 M klorür asidi indeki % 5 lik çözeltisinden damla damla katiniz: Demir(III) iyonunun indirgenmesi sonucunda kobalt rodanürün parlak mavi rengi ortaya çıkar.

YÜKSELTGENME - İNDARGENME REAKSIYONLARI

Kalitatif Analiz Uygulanması; Sayfa : 84 – 94.

DENEME - 60 : Bir deneme tüpünde bulunan 3 - 4 mL seyreltik bakır(II) sülfat çözeltisi içine bir çinko tanesi atınız: Bir süre sonra çinkonun üzerine kirmızı renkli metalik bakıra kaplanır ve çözelti renksizleşir.

Açıklama: Çinko, gerilim sırasında bakırın üzerinde bulunduğu metalik çinko, Cu²⁺ iyonlarını metalik bakıra indirger ve kondisi de Zn²⁺ iyonuna yükseltgenir:

\[
\begin{align*}
\text{Zn}^0 & \rightarrow \text{Zn}^{2+} + 2e^- \quad \text{(Yükseltgenme)} \\
\text{Cu}^{2+} + 2e^- & \rightarrow \text{Cu}^0 \quad \text{(Indirgenme)}
\end{align*}
\]

\[
\text{Zn}^0 + \text{Cu}^{2+} \rightarrow \text{Cu}^0 + \text{Zn}^{2+} \quad \text{(Toplam reaksiyon)}
\]

DENEME - 61 : Bir deneme tüpüne 5 – 6 damla cıva(II) klorür çözeltisi koyup 5 mL su ile seyreltiniz ve bu çözeltiye bir bakır parçası koyunuz: Bakırın yüzeyinde beyaz renkli metalik cıva ayrılır. Bu sırada karışım hafifçe ışınır. On dakika sonra çözeltiye 3 mL derişik amonyak çözeltisi katiniz: Oluşan koyu mavi renk ortamda bakır(II) iyonlarının varlığımı gösterir.

Bu denemedeki reaksiyonların denklemlerini yazınız.

DENEME - 62 : Bir deneme tüpünde bulunan seyreltik klorür asidi çözeltisi içine bir çinko tanesi atınız: Çinko, hidrojen çıkışı ile birlikte çözünür.

Açıklama: Çinko gerilim sırasında hidrojenin üzerinde olduğundan çinkonun çözünmesi sonucu oluşan gerilim hidrojenin elementel duruma indirgenmesi için yeterlidir.
\[\text{Zn}^0 + 2\text{H}^+ \rightarrow \text{Zn}^{2+} + \text{H}_2^0 \]

DENEME - 63: Bir deneme tüpünde bulunan seyreltik klorür asidi çözeltisi içine bir metalik bakır parçası koyunuz: Hidrojen çıktı veya herhangi bir reaksiyon olmaz.

Olayın nedenini gerilim sırasını göz önünde alarak açıklayınız.

DENEME - 64: Bir deneme tüpünde bulunan seyreltik nitrat asidi çözeltisine bir bakır parçası atınız: Kırımızı renkli azot oksitleri dışarıya birlikte bakır çözünür.

Bakırın çözümesine ilişkin reaksiyon denklemini yazınız ve redoks olayını açıklayınız.

DENEME - 65: Bir deneme tüpüne 5 - 6 damla cıva(I) nitrat çözeltisi ile 1 mL su koyunuz ve üzerine 0,5 mL sodyum hidroksit çözeltisi katınız: Metalik cıva ile cıva(II) oksit içeren siyah bir çözelti oluşur.

Açıklama: Burada, yükseltgenme basamağı +1 olan cıva atomlarından biri yükseltgenme basamağı sıfır olan elementel sıvıya indirgenirken oteki + 2 yükseleştgenme basamağına yükseltgenmiştir.

\[\text{Hg}_2^{2+} + 2\text{OH}^- \rightarrow \text{Hg}^0 + \text{H}_2\text{O} + \text{H}_2\text{O} \]

Aynı yükseltgenme basamağında bulunan atomların birbirleri ile redoks reaksiyonuna girmeleri sonucu bunların bir bölümü yükseltgenip oteki bölümüne indirgenme-si olayına *disproporsiyonlaşma* veya *oksidoreduksiyon* adı verilir.

DENEME - 66: (Molekül içi redoks - Bakır(II) nitratin bozunması).

Bir deneme tüpüne bir kaç tane \(\text{Cu(NO}_3\text{)}_2 \cdot 3\text{H}_2\text{O} \) kristali koyup küçük bir alevde dikkahtice ısıtınız. Kristallerin dehidratasyonunu (kristal suyunu kaybetmesini), renk değişimini ve gaz çıktığını gözleyiniz.

1. Reaksiyon ürünlerinin bakır(II) oksit, azot dioksit ve oksijen olduğunu göz önüne alarak bakır(II) nitratin bozunmasına ilişkin reaksiyon denklemini yazınız?
2. Bakır(II) nitrat içindeki yükseltgen ve indirgenleri belirteiniz ve elektron alış-veriş şemasını çiziniz.

DENEME - 67: (Kalay(II) nin reaksiyonu girdiği öteki bileşigi bağlı olarak indirgen ve yükseltgen özellik göstermesi).

(a) Bir deneme tüpünde bulunan 8 – 10 damla kalay(II) klorür çözeltisi içine küçük bir çınko parçası koyunuz: Çınkonun yüzeyinde par-lak kalay kristallerinin oluşumu gözlenir.
(b) Bir deneme tüpünde bulunan 0,5 mL kalay(II) klorür çözeltisine 4 – 5 damla cıva(I) nitrat çözeltisi kattınız: Önce beyaz renkli cıva(I) klorür (kalomel; Hg₂Cl₂) çözeltisi oluşur ve bunun metalik cıvaya dönüşmesi sonucunda çözeltinin rengi gitgide koyulaşarak gri - siyah olur.

1. Kalay(II) klorür ile çinko, cıva(I) nitrat ve cıva(I) klorür arasında ortaya çıkan reaksiyonların denklemlerini yazınız.

2. Sn²⁺ iyonu Zn⁰ ve Hg₂²⁺ iyonları ile olan reaksiyonlarının hangisinde indirgen ve hangisinde yükseltgen olarak davranmıştır?

DENEME - 68 : (Redoks dengeleri).

(a) Bir deneme tüpünde bulunan 1 mL potasyum iyodur çözeltisi üzerine 0,5 mL demir(III) klorür çözeltisi ve 3 mL seyretlik klorür asidi çözeltisi kattınız: Çözeltide iyodun kendine özgü esmer rengi görülür.

(b) Hazırladığınız bu çözeltiden 5 damlasını başka bir tüpe aktarınız ve üzerine amonyum rodanur çözeltisi kattınız: Oluşan kirmızı renk, ortamda iyodürün aşırısının bulunmasına karşın demir(III) iyonlarının da bulunduğunu gösterir.

(c) İlk hazırladığınız çözeltiden bir deneme tüpüne 1 mL alınız ve üzerine 2 – 3 mL benzen veya karbon tetraklorür koyarak çalkalayınız. Elementel iyodun büyük bir bölümü organik faza geçer. Fazların ayrılması için bekleyniz ve su fazından aldığınız 5 damla çözelti üzerine başka bir tüpte amonyum rodanur çözeltisi kattınız: Öncelikle oranla çok daha açık kirmızı bir renk oluşur.

(d) İlk hazırladığınız çözeltiden bir deneme tüpüne 1 mL koyuruz ve üzerine amonyum oksalat çözeltisinin aşırısını kattınız: Çözelinin esmer rengi bıtırılmış gider.

Açıklama : Bu denemeler, çözeltide Fe³⁺ ile I⁻ arasındaki redoks reaksiyonunun bir denge ile sonuçlandığını gösterir:

\[2\text{Fe}^{3+} + 2\text{I}^- \rightleftharpoons 2\text{Fe}^{2+} + \text{I}_2 \]

\[K = \frac{[\text{Fe}^{2+}]^2 [\text{I}_2]}{[\text{Fe}^{3+}]^2 [\text{I}^-]^2} \]

(Deneme - b) de çözeltinin rodanur ile kirmızı renk vermesi çözeltideki iyodür aşırısına karşın ortamda Fe³⁺ iyonunun da bulunduğu gösterir. (Deneme - c) de çözeltinin organik çözücü ile çalkalanmasından sonra kirmızı rengin oluşumundaki azalma ortamdaki iyodun organik faza geçmesiyle suyu fazdaki iyot konsantrasyonunun azalması
sonuçunda dengenin sağ yan lehine bozulduğunu gösterir. Bu durumda Fe³⁺ iyonu konsantrasyonu azalmış, yani Fe³⁺ iyonları Fe²⁺ basamağına indirgenmiştir. (Deneme - d) de çözeltiye oksalat katılması sonucunda kararlı [Fe(C₂O₄)₃]³⁻ kompleksinin oluşumu nedeniyle çözeltideki Fe³⁺ konsantrasyonu azalmıştır. Bunun sonucunda denge sol yan lehine bozularak elementel iyon iyodüre dönüştüştür.

Genel olarak, bütün redoks reaksiyonları iki yönlüdür, yani bir denge ile sonuçlanırlar. Bu denge bir yanın lehine olabilir. Örneğin, yukarıdaki denge pratikçe sağ yanın lehinedir.

DENEME - 69: (Redoks gerilimi üzerine hidrojen iyonu konsantrasyonunun etkisi). Asitli çözeltide iyodür iyonları nitrit iyonları tarafından elementel iyoda yükseltgenir:

\[2NO_2^- + 3I^- + 4H^+ \rightleftharpoons I_3^- + 2NO + 2H_2O \]

\[E^0 (HNO_2, H^+/NO) = 0,990 \text{ Volt } ; \quad E^0 (I_3^- / 3I^-) = 0,536 \text{ Volt} \]

\[pH > 6 \] durumunda HNO₂/NO sisteminin redoks gerilimi o kadar azalır ki iyodürün elementel iyoda yükseltgenmesi olanaksızlaşır. Nitrit iyonunun kaştıratıf olarak taşınır,

\[3HNO_2 \rightleftharpoons NO_3^- + H^+ + 2NO + H_2O \]

denklemi uyarnca bozunacağın çözeltinin asitlendirilmesi için nitrit asidinden (pKₐ = 3,22) daha zayıf yani pKₐ si daha büyük asitlerin kullanılması gereklidir.

Bir deneme tüpüne 1 mL % 1 lik sodyum nitrit çözeltisi ve 2 mL su koyup bu çözeltiyi iki tüpe böleniz.birinci tüpe 0,5 mL % 5 lik potasyum iyodür çözeltisi katanız: Hiçbir değişiklik gözlenmez. İkinci tüpe 0,5 mL 2 M asetik asit çözeltisi ve ardından 0,5 mL % 5 lik potasyum iyodür çözeltisi katanız: Elementel iyodun esmer rengi gözlenir. Çözeltilye 1 – 2 mL kloroform veya karbon tetraklorür katarak çalkalanız: Organik faz iyodun menekşe rengini gösterir.

Aynı denemeyi potasyum bromür çözeltisi ile tekrarlayınız: Hiç bir reaksiyon gözlenmez.

Standart redoks gerilimlerini göz önünde alarak olayı açıklayınız.

DENEME - 70: Bir deneme tüpünde bulunan 1 mL potasyum bromür çözeltisi üzerine 1 mL asetik asit ve 1 mL sodyum asetat çözeltisi koyunuz ve 0,5 mL potasyum permanganat çözeltisi katarak
hafifçe ısıtıınız: Elementel brom kokusu duylular ve tüpün ağzına tutulan potasyum iyodürlü nişasta çözeltisine baturılmış süzgeç kağıdını mavileşir. Çözeltide ise kahverengi mangan(IV) oksit çözeltisi oluşur.

Bu denemedeki reaksiyonların denklemlerini yazınız.

DENEME - 71: (Basamaklı yükseltgenme - indirgenme reaksiyonları). İndirgenme ve yükseltgenme reaksiyonları çoğu kez ara basamaklar üzerinden yürür ve bu durum çeşitli yükseltgenme basamaklarında bulunabilen elementler için karakteristiktir. Vanadyumun yükseltgenme basamakları, II, III, IV ve V dir. Vanadyum(V) in indirgenmesi veya vanadyum(II) nin yükseltgenmesi kendine özgü renkleri olan ara basamaklar üzerinden yürür. Vanadyum tuzlarının indirgenmesi veya yükseltgenmesi asitli ortamda olur. Sülfat asitli ortamda Vanadyum(V) iyonunun sarı renkli \(VO_2^+ \) iyonu ve karmasık yapılı \([V_{10}O_{28}]^{6-}, [V_2O_7]^{4-} \) ve \([V_4O_{12}]^{14-} \) gibi çeşitli polimer iyonlar oluşturabileceği göz önune alınmalıdır.

\[
VO_3^- + 2H^+ \rightleftharpoons VO_2^+ + H_2O
\]

İndirgenme sırasında birinci basamakta vanadyum(IV) içeren mavi renkli pentaaquavanadil, \([VO(H_2O)_5]^{2+}\), iyonu oluşur:

\[
VO_2^+ + 2H^+ + 4H_2O + e \rightleftharpoons [VO(H_2O)_5]^{2+} \quad ; \quad E^o = 1,00 \text{ Volt}
\]

İkinci basamakta vanadyum(III) içeren yeşil renkli heksaaquaivanadyum(III), \([V(H_2O)_6]^{3+}\), iyonları oluşur:

\[
[V(H_2O)_6]^{2+} + 2H^+ + e \rightleftharpoons [V(H_2O)_6]^{3+} \quad ; \quad E^o = 0,36 \text{ Volt}
\]

Son basamakta vanadyum(II) içeren menekşe renkli heksaaquaivanadyum(II), \([V(H_2O)_6]^{2+}\), iyonları oluşur:

\[
[V(H_2O)_6]^{3+} + e \rightleftharpoons [V(H_2O)_6]^{2+} \quad ; \quad E^o = 0,25 \text{ Volt}
\]

Çözeltide aynı anda \([V(H_2O)_6]^{2+}\) ve \([VO(H_2O)_5]^{2+}\) iyonları birlikte bulunursa \([VOV]^4+\) yapısından bir ara bileşik oluşur ve buna karşılık olan kahverengi bir renk ortaya çıkarabilir.

Vanadyum(II) basamakları olarak aynı yollardan geçerek yükseltgenir. Yukseltgenme sırasında \([VO(H_2O)_5]^{2+}\) iyonu oluştuğunda
kısım doğrudan ve kısmen [VOV]^{4+} ara ürünü üzerinden yükseltgenme olabilir.

Küçük bir beher veya büyük bir deneme tüpüne 10 mL % 5 lik amonyum vanadat çözeltisi koyunuz: Çözelti renksizdir. Daha sonra 1 mL 9 M sülfat asidi çözeltisi katınız: VO^{+}_{2} iyonlarının oluşumu nedeniyle çözeltinin rengi sariya döner. Bu çözeltiye 1 g çinko tanesi atınız: Hidrojen gazı çıkar ve çıkan hidrojenin indirgen etkisyle çözeltinin rengi yavaş yavaş ve sırasıyla mavi, yeşil ve menekse olur. Bir süre sonra çözelti kahverengileşir.

DENEME - 72: Önceki denemede ele geçen menekse renkli vanadyum(II) sülfat çözeltisi üzerine yavaş yavaş ve damla damla 0,2 M potasyum permanganat çözeltisi katınız: Çözeltide menekse → yeşil → mavi → sari biçiminde bir renk değişimi gözlenir.

DENEME - 73: (Permanganatın bazik ortamda basamaklı olarak indirgenmesi). Permanganat iyonu (MnO_{4}^{-}), manganat iyonu (MnO_{4}^{2-}) ve mangan(IV) oksit (MnO_{2}) bazik ortamda kararlı olan türlerdir. Bunların yanında, soğukta ve kuvvetli bazik çözeltiğerde sodyum manganit (Na_{3}MnO_{4}) gibi parlak mavi renkli kararlı tuzlar oluşturabilen hipomanganat (MnO_{4}^{3-}) iyonu da elde edilebilir. Bu denemede, buzla soğutulmuş bazik bir permanganat çözeltisinin soğuk seyreltik hidrojen peroksit çözeltisi katılarak indirgenmesi incelenecektir. Permanganatın indirgenmesi sırasında mangan kendine özgü renkleri olan çeşitli yükseltgenme basamaklarından geçer. Bu basamaklar, mor - menekse renkli permanganat (manganat(VII), MnO_{4}^{-}), koyu yeşil renkli manganat (manganat(VI), MnO_{4}^{2-}) açık mavi renkli hipomanganat (manganat(V), MnO_{4}^{3-}) ve kahverengi bir çökteli olan mangan(IV) oksit (MnO_{2}) tır. Denemenin amacı, manganın VII, VI, V ve IV yükseltgenme basamaklarını ve bunların karakteristik özelliklerinden bazılarını göstermektedir. Mangannın hipomanganata karşılık olan V yükseltgenme basamağı az bilinen bir basamaktır.

400 mL lik bir behere buzla soğutulmuş (0° C) 150 – 200 mL derişik (6 – 7 M) sodyum hidroksit çözeltisi konulur. Sodyum hidroksit
çeşitleri hazırlanırken büyük bir ısı çıkışı olduğundan katı sodyum hidroksit suya yavaş yavaş katılarak çözülmelidir. Sodyum hidroksit çözeltisinin hacminin büyük alınmasının nedeni deneme sırasında çözeltinin sıcaklığının yeterince düşük (0 – 4 °C) kalmasını sağlamaktır.

1 mL suda 0,008 – 0,015 g arasında potasyum permanganat çözülmür ve bu çözelti soğutulmuş baz çözeltisine karıştırılarak katılır. Permanganatın bu miktarlar arasında alınması indirgenme sırasında renklerin iyi bir biçimde gözlenmesini sağlar. Permanganat konsantrasyonu yüksek olduğunda manganat iyonunun (MnO₄⁻) koyu yeşil rengini göze geleceğidir. Ayrıca, fazla derişik sodyum hidroksit çözeltisinden kaçınılmalıdır. Bu durumda, soğuk bazın viskozitesinin yüksekliği nedeniyle aşağıdaki (1) denklemi uyarınca oluşan oksijen gazı çözeltiye bulanık bir görüntü vererek çözeltideki renk değişimlerinin gözlenmesini güçleştirir.

\[\text{OH}^- + \text{HO}_2^- \rightleftharpoons \text{H}_2\text{O} + \text{O}_2 + 2\text{e} \]

(1)

Daha sonra soğuk ve bazik potasyum permanganat çözeltisine damla damla soğuk ve seyretlik (% 0,1) hidrojen peroksid çözeltisi katılır. Çözeltinin rengi yavaş yavaş değişmeye başlar ve başlangıçta alınan potasyum permanganat miktarına bağlı olarak 1 – 2 mL katıldığında çözeltinin rengi oluşan MnO₄⁻ iyonu nedeniyle koyu yeşil olur. Bu aşamada hidrojen peroksid katılması durdurulur. Büyük bir deneme tüpü bu çözelti ile yarışına kadar doldurulur ve asıtlendirilerek manganat iyonunun disproporsiyonlaşması incelenir. Disproporsiyonlaşma manganat iyonunun en iyi bilenen ve en karakteristik olan bir reaksiyonudur:

\[3\text{MnO}_4^- + 4\text{H}_2\text{O}^+ \rightleftharpoons 2\text{MnO}_4^- + \text{MnO}_2 + 6\text{H}_2\text{O} \]

(2)

Bunun için, deneme tüpüne iki katman oluşturacak biçimde dikkate 6 – 7 mL 6 M asitik asit çözeltisi katılır. Asit katılması yeterince dikkate yapılar (2) reaksiyonu yalnızca sodyum hidroksit çözeltisi ile asitik asit çözeltisi katmanlarının ara yüzeyinde yürür. Bununla birlikte, manganat çözeltisinin küçük bölümlerinin asitle reaksiyonça girmesini sağlayacak biçimde üst katmanın bir cam çubukla dikkatlice kariş-
tirilmasıyla iki tane farklı renkte katman oluşturulabilir. Alttaki katman koyu yeşil renkli manganat ve onun üzerindeki katman da mor - kırmızı renkli permanganattır. Kuvvetli bazik çözeltide mangan(IV) ün \(\text{MnO}_4^{2-} \) iyonu biçimde bulunması nedeniyle katı \(\text{MnO}_2 \) çözeltisinin oluşumu gözlenemez:

\[
\text{MnO}_2 + 4\text{OH}^- \rightleftharpoons \text{MnO}_4^{2-} + 2\text{H}_2\text{O}
\]

Çözeltinin rengi açık mavi veya gök mavisi oluncaya kadar behere damla damla hidrojen peroksit çözeltisi katılır. Bu aşamada bir deneme tüpü yarısına kadar bu çözelti ile doldurulur ve daha önceki denemedeki olduğu gibi iki katman oluşturacak biçimde 2 mL 6 M asit çözeltisi katılır. Asitle bazik çözeltinin yeterince karışıması nedeniyle üst katman renksiz veya çok hafif kırmızı renkli olur. Bir cam çubuk yardımıyla hipomanganat çözeltisinin küçük bölümlerinin asitle reaksiyona girmesini sağlamak biçimde dikkatlice karştırılması sonucunda iki tane farklı renkte katman elde edilebilir. Bu durumda alttaki katman mavi renkli \(\text{MnO}_4^{3-} \) ve üstteki katman da yeşil renkli \(\text{MnO}_4^{2-} \) dir. Hipomanganat iyonu aşağıdaki denkleme göre disporsiyonlaşır:

\[
2\text{MnO}_4^{3-} + 4\text{H}_3\text{O}^+ \rightleftharpoons \text{MnO}_4^{2-} + \text{MnO}_2 + 6\text{H}_2\text{O}
\]

Bu ortamda da katı \(\text{MnO}_2 \) gözlenemez. Elde edilen manganat çözeltisinin bir bölümü üzerine dikkatle 6 M asit asit çözeltisi katılmış bir cam çubukla dikkatlice karştırılrsa farklı renkte üç katman gözlenebilir. Bu durumda en alttaki katman açık mavi renkli \(\text{MnO}_4^{3-} \), ortadaki katman yeşil renkli \(\text{MnO}_4^{2-} \) ve üstteki katman da kırmızı - mor renkli \(\text{MnO}_4^- \) içerir. Böylece, bir tek tüp içinde üç farklı yüksektenme başamağı da gözlenebilir. Ayrıca, hipomanganat iyonları ile permanganat iyonları arasındaki simproporsiyonlaşma da gözlenebilir:

\[
\text{MnO}_4^{3-} + \text{MnO}_4^- \rightleftharpoons 2\text{MnO}_4^{2-}
\]

Bu reaksiyon, elimizdeki \(\text{MnO}_4^{3-} \) çözeltisi ile başlangıçtaki \(\text{MnO}_4^- \) çözeltisinden eşit hacimlarda alınıp birbirleri ile karıştırılan da gerçekleştirebilir.
Hipomanganat iyonu yüksek sıcaklıklarda kararlı olamadığından (10 °C de hipomanganatın mavi rengi yaklaşık 10 – 15 saniyede kaybolur) deneme tüpleri buzlu su ile dolu bir cam kap içinde tutulmalıdır. Cam kap dışardan aydınlatılarlsa iyi bir görüntü sağlanabilir.

Behere hidrojen peroksit katılması sürdürüleceği çözelti yeşilimsi kahverengi bir renk alır ve sonunda kahverengi MnO₂ çözeltisi oluşur. Reaksiyonun hızla tamamlanması için birkaç damla % 35 lik hidrojen peroksit çözeltisi katılabilir. Son indirgenme ürünü kararlı bir bileşik olan mangan(IV) oksit (MnO₂) tir.

DENEME - 74: (Demir, kalay ve civannın yükseltgenme basamakları).

Gerekli çözeltiler: 50 mL 0,1 M Fe(NO₃)₃; 70 mL 0,1 M Na₂S₂O₃; 5 mL 11,5 M HCl; 15 mL 0,1 KSCN; 100 mL SnCl₂ (70 mL derişik HCl de 11,2 g SnCl₂.2H₂O çözülür, çözelti süzülecek veya aktarma yoluya çözünmeyen kısmından ayrılır ve su ile 100 mL ye seyreltilir); 10 mL doymuş HgCl₂; 25 mL 0,01 M KMnO₄.

Demir, kalay ve civanın indirgenme gerilimleri:

\[
\begin{align*}
\text{Fe}^{2+} + 2e^{-} & \rightarrow \text{Fe} & E^\circ = -0,44 \text{ V} \\
\text{Sn}^{4+} + 2e^{-} & \rightarrow \text{Sn}^{2+} & E^\circ = +0,15 \text{ V} \\
\text{S}_4\text{O}_6^{2-} + 2e^{-} & \rightarrow 2\text{S}_2\text{O}_3^{2-} & E^\circ = +0,17 \text{ V} \\
\text{Hg}_2\text{Cl}_2 + 2e^{-} & \rightarrow 2\text{Hg} + 2\text{Cl}^- & E^\circ = +0,27 \text{ V} \\
\text{Fe}^{3+} + e^{-} & \rightarrow \text{Fe}^{2+} & E^\circ = +0,77 \text{ V} \\
\text{Hg}_2^{2+} + 2e^{-} & \rightarrow 2\text{Hg}^{2+} & E^\circ = +0,78 \text{ V} \\
2\text{Hg}^{2+} + 2e^{-} & \rightarrow \text{Hg}_2^{2+} & E^\circ = +0,92 \text{ V} \\
\text{MnO}_4^- + 8\text{H}^+ + 5e^{-} & \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} & E^\circ = +1,51 \text{ V} \\
\end{align*}
\]

İşlem - 1: 250 mL lik bir erlene 25 mL 0,1 M Fe(NO₃)₃ çözeltisi konulur ve erlenin kenarından önce birkaç mL 0,1 M Na₂S₂O₃ çözeltisi
akıtırlar. Hemen ortaya çıkan koyu mor renk demir(III) kompleksinin oluşumunu gösterir. Daha sonra geri kalan Na₂S₂O₃ çözeltisi (toplamb 35 mL olacak kadar) hızla katılır. Redoks reaksiyonu nedeniyle çözeltinin rengi 3–5 dakika içinde açık sarıya dönür.

Açıklama: İlk reaksiyon demir(III) ile sodyum tıtyosulfat arasındaki reaksiyon sembolü olarak ifade edilir ve hemen mor renkli bir kompleks olan bir tiyosulfatoferratt(III) iyonu oluşur:

\[\text{Fe}^{3+} + 2\text{S}_2\text{O}_3^{2-} \rightarrow [\text{Fe}(\text{S}_2\text{O}_3)_2]^- \] \hspace{1cm} (10)

İkinci reaksiyon demir (II) iyonlarının tıtyosulfat tarafından demir(II) basamağında indirgenmesi ve rengin tedrici olarak renksiz doğru değişmesi nedeniyle kinetik olarak denetlenebilir. Bu reaksiyonada geçerli olan kural, indirgenme gerilimleri çizelgesindeki sıralamada indirgen olarak etkiyenin (S₂O₃⁻) geriliminin yükseltgen olammını (Fe³⁺) üzerine olmasıdır. Reaksiyon denklemi çizelgedeki (4) ve (6) yargım reaksiyonlarından çıkartılabilir:

\[2\text{Fe}^{3+} + 2\text{S}_2\text{O}_3^{2-} \rightleftharpoons 2\text{Fe}^{2+} + S_4\text{O}_6^{2-} \] \hspace{1cm} (11)

İşlem - 2: Daha sonra çözelti 2,5 mL derişik HCl katılarak asitlendirilir. Mor renkli 0,01 M KMnO₄ çözeltisinden 12,5 mL erlenin kana rından akıtırlar. Demir çözeltisine temas eden mor çözelti hemen renksiz leşir. Daha sonra demirin bulunduğu yükseltgenme basamağını saptamak için 7–8 mL 0,1 m KSCN çözeltisi katılır.

Açıklama: KMnO₄ çözeltisinin katılması permanganat ile yapılan tipik bir redoks titrasyonudur. Ortamın asitliği MnO₃⁻ olan indirgenme ürünü olarak MnO₂ yerine rensiz Mn²⁺ iyonunun oluşmasını sağlayacak düzeydedir. Demir(II) iyonları yükseltgenerek demir(III) durumuna geri dönürlere. Bu olay koyu turuncu renkli rodanır kompleksinin oluşumu ile gözenler:

\[\text{Fe}^{3+} + \text{SCN}^- \rightleftharpoons \text{Fe(SCN)}^{2+} \] \hspace{1cm} (12)

Reaksiyon denklemi (6) ve (9) yargım reaksiyonlarından çıkartılabilir:

\[\text{MnO}_4^- + 5\text{Fe}^{2+} + 8\text{H}^+ \rightarrow \text{Mn}^{2+} + 5\text{Fe}^{3+} + 4\text{H}_2\text{O} \] \hspace{1cm} (13)

İşlem - 3: Çözeltiye yavaça 5 damla SnCl₂ çözeltisi katılır. Çözeltiye rengini veren turuncu renkli demir rodanır kompleksi bir daki ka içinde yavaşa renksizleşir. Daha sonra hızla 5 mL doymuş HgCl₂ çözeltisi katılır ve önce beyaz bir çokelti gözlenir. Bu çokelti yavaşa veya hızla grileşir.

Açıklama: Bu son denemedeki reaksiyonlar bazı durumlarda demir örneklerinin titrasyon için demir(II) bıçimine getirilmesinde kullanılır. Kalay(II) klorür demir(III)ün
demir(II) basamağına indirgenmesinde kullanılır. Koyu turuncu rengin kaybolması bu reaksiyonu gösterir. Indirgene reaksiyonu (3) ve (6) yarım reaksiyonlarından çıkarılabilir:

$$2\text{Fe}^{3+} + \text{Sn}^{2+} \rightarrow 2\text{Fe}^{2+} + \text{Sn}^{4+}$$

(14)

Bu iki yarım reaksiyonunšecininde aşağıdaki yol izlenir. Yüksekten olarak Fe$^{3+}$ iiperen tek yarım reaksiyon (8) olduğundan bunun seçimi kolaydır. Sn$^{2+}$, (2) ve (3) yarım reaksiyonların her ikisinin de bulunur. Bununla birlikte, (2) yarım reaksiyonunda yüksekten olarak ve (3) yarım reaksiyonunda da indirgen olarak bulunur. Yüksekten olan Fe$^{3+}$ ün indirgenmesi için Sn$^{2+}$ inin indirgen olarak davranış (3) reaksiyonu alınmalıdır.

Son reaksiyon ve çözeltinin görünümü çözeltide kalan kalay(II) klorür fazlasına bağlıdır. Son reaksiyon altı tane yarım reaksiyon (2,3,5,6,7 ve 8) içinde uygun bir tanesini seçme olanacağını iyi bir örnek Son reaksiyonda kullanılan Hg$^{2+}$, cvann'un bulunan bileceği en yüksek yüksektenme basamağı olduğundan (8) yarım reaksiyonunda yüksekten olarak davranır ve kendisi Hg$^{2+}$ vermek üzere indirgenir. Burada temel olarak Hg$^{2+}$ nin çözeltide bulunan Sn$^{4+}$, Fe$^{2+}$, Mn$^{2+}$, S$^{2-}$, SO$^{2-}$, Cl$^{-}$, SCN$^{-}$ ve aşırı Sn$^{2+}$ ioniundan hangisi ile reaksiyona gireceğinin seçilmişdir. Dikkatli bir incelleme Sn$^{4+}$ ve S$^{2-}$ ioniunların yüksekten olduğunu gösterir. Mn$^{2+}$ bir indirgen olmakla birlikte gerilimi Hg$^{2+}$ yarım reaksiyonunun altında. Fe$^{2+}$ nin indirgen olmak (6) yarım reaksiyonuna göre Hg$^{2+}$ ile reaksiyona girmesi olanakları ise de (12) ve (13) reaksiyonlarında olduğu gibi Fe$^{3+}$ ioniunlar oluşur oluşmaz çözeltinin reninin kırmızı - turuncuya geri döndümesi gereder. Fe$^{2+}$ ile Hg$^{2+}$ arasındaki reaksiyon gözlenemeyecık kadar yasaktır.

Sonuç olarak, Sn$^{2+}$ indirgen olarak davranır ve (3) yarım reaksiyonu yarınca Sn$^{4+}$ verir. Reaksiyonun toplu denklemi,

$$\text{Sn}^{2+} + 2\text{Hg}^{2+} \rightarrow \text{Sn}^{4+} + 2\text{Hg}^{2+}$$

(15)

biçimindedir. Reaksiyondaki beyaz çözelti Hg$_2$Cl$_2$ dir ve bu çözeltinin yavaş yavaş kararmas metalik cıva oluşumundan kaynaklanır. Hg$_2$Cl$_2$ nin bir arası yüksektenme basamağı bulunması nedeniyle bu ion (7) yarım reaksiyonuna göre yüksekten ve (8) yarım reaksiyonuna göre de indirgen olarak davranabilir. Hg$_2$Cl$_2$ oluşur oluşmaz (3) ve (5) veya (7) yarım reaksiyonlarına göre Sn$^{2+}$ ile reaksiyon verebilir:

$$\text{Hg}_2\text{Cl}_2 + \text{Sn}^{2+} + 2\text{Cl}^- \rightarrow \text{Hg} + \text{Sn}^{4+} + 2\text{Cl}^-$$

(16)

(5) ve (7) yarım reaksiyonlarının karşılaştırılması şeklinden bir maddenin varlığında yarım reaksiyon gerilimlerinin nasıl etkilendiğini gösterir. Hg$_2$Cl$_2$ bileşiği Hg$^{2+}$ iyonundan daha kararlı olmakla birlikte Sn$^{2+}$ kuvvetli bir indirgen olduğundan indirgenme metalik cıvaya kadar sürer.

DENEME - 75 : (Brom ve iyodon yüksektenme basamakları).

Gerekli çözelti ve kaplar : KBrO$_3$ (88 mL su ve 12 mL 0,5 M H$_2$SO$_4$ karışımında 1 g KBrO$_3$ çözülür) ; KI (100 mL suda 1 g KI çözülür) ; nişasta çözeltisi (100 mL kaynar suda 1 g nişasta çözülür) ; damıtık su ; 100 mL lik ölçü kabı ; 250 mL lik beher.
YÜKSELTGENME - İNDİRGENME REAKSIYONLARI

Brom ve iyodun indirgenme gerilimleri

\[I_2 + 2e \rightarrow 2I^- \quad E^o = + 0,53 \text{ V} \] (1)

\[Br_2 + 2e \rightarrow 2Br^- \quad E^o = + 1,08 \text{ V} \] (2)

\[IO_3^- + 6H^+ + 6e \rightarrow I^- + 3H_2O \quad E^o = + 1,09 \text{ V} \] (3)

\[IO_3^- + 5H^+ + 4e \rightarrow HIO + 2H_2O \quad E^o = + 1,14 \text{ V} \] (4)

\[IO_3^- + 6H^+ + 5e \rightarrow \frac{1}{2} I_2 + 3H_2O \quad E^o = + 1,19 \text{ V} \] (5)

\[HIO + H^+ + e \rightarrow \frac{1}{2} I_2 + H_2O \quad E^o = + 1,45 \text{ V} \] (6)

\[BrO_3^- + 5H^+ + 4e \rightarrow HBrO + 2H_2O \quad E^o = + 1,49 \text{ V} \] (7)

\[BrO_3^- + 6H^+ + 5e \rightarrow \frac{1}{2} Br_2 + 3H_2O \quad E^o = + 1,52 \text{ V} \] (8)

\[HBrO + H^+ + e \rightarrow \frac{1}{2} Br_2 + H_2O \quad E^o = + 1,59 \text{ V} \] (9)

\[H_5IO_6 + H^+ + 2e \rightarrow IO_3^- + 3H_2O \quad E^o = + 1,60 \text{ V} \] (10)

İşlem - 1: (I^- iyonlarının aşırısı). 250 mL lik bir beherde 50 mL su ile 2 mL nișasta çözeltisi ve 1 mL KI çözeltisi karıştırılır. Bir ölçü kabına 100 mL KBrO_3 çözeltisi konulur. Beherdeki karışımı birkaç damladan 1 mL ye kadar KBrO_3 çözeltisi katılır. Derhal mavi bir renk oluşur.

Açıklama: Redoks reaksiyonlarının kendiliğinde yürüyebilmesi için indirgenim geriliminin yükseltgenininkinin üzerinde olması gereklidir. En düşük yükseltgenme basamakında bulunması nedeniyle indirgen olarak I^- iyonunun seçilmesi kolaydır. Aynı biçimde, en yüksek yükseltgenme basamakında bulunması nedeniyle yükseltgen olarak BrO_3^- iyonu belirlenir. Bir ön işlem olarak bromat iyonlarına ilişkin (8) yarım reaksiyonu ile iyodur iyonlarına ilişkin (1) yarım reaksiyonundan,

\[2BrO_3^- + 10I^- + 12H^+ \rightarrow Br_2 + 5I_2 + 6H_2O \] (11)

yazılabilir. Bromat iyonları (3) yarım reaksiyonuna göre I^- iyonları ile reaksiyona girerek Br_2 ve IO_3^- oluşturabilir. Bununla birlikte, ortamda I^- iyonları aşırı olduğundan I^- ve IO_3^- arasında reaksiyona girecek hiç bir yükseltgen kalmayıcaya kadar daha ileri reaksiyonlar görülebilir.

(1) ve (3) : \[6I^- + IO_3^- + 6H^+ \rightarrow I^- + 3I_2 + 3H_2O \] (12)

(1) ve (4) : \[4I^- + IO_3^- + 5H^+ \rightarrow HIO + 2I_2 + 2H_2O \] (13)

(1) ve (5) : \[10I^- + 2IO_3^- + 12H^+ \rightarrow 6I_2 + 6H_2O \] (14)

(1) ve (6) : \[2I^- + 2HIO + 2H^+ \rightarrow 2I_2 + 2H_2O \] (15)

Yukardaki reaksiyonlar KI den son ürün olarak iyodun oluştuğunu göstermektedir. Elementel iyon iyodür içeren ortamlarda I_2 kompleksi biçiminde bulunur ve nișasta ile koyu
mavi renkli bir kompleks oluşturur. Bununla birlikte, yukarıda dönemin reaksiyonlar içinde brom yoktur ve bu nedenle bu açıklama tam değildir. Başlangıçta (8) yarım reaksiyonu uzunca Br₂ oluşur. Iyodür iyonu da (7) yarım reaksiyonu uzunca bromat iyonu ile reaksiyona girerek hipobromit asidi (HBrO) oluşturur:

\[4I^- + BrO_3^- + 5H^+ \rightarrow HBrO + 2I_2 + 2H_2O \]

(16)

Gerilim sırasında görüldüğü gibi, oluşan HBrO kararlı değildir, (7) ve (9) yarım reaksiyonları uzunca disporsiyonaRARY YANI KENDİ İLE HEM YÜKSELTGEN VE HEM INDİRGEN OLARAK REAKSIYONA GİRET:

\[4HBrO + HBrO \rightarrow 2Br_2 + BrO_3^- + 2H_2O + H^+ \]

(17)

Ortamda iyodür iyonlarının artışının bulunması nedeniyle BrO_3^- iyonlarının tümü (11) reaksiyonu uzunca hızla harcanarak I₂ ve Br₂ verir. Bununla birlikte, iyodür faz- lasının Br₂ ile (1) ve (2) yarım reaksiyonlarına göre,

\[2I^- + Br_2 \rightarrow I_2 + 2Br^- \]

(18)

reaksiyonunu vermesi olanaaklidir. Özetle, KI fazlası kullanıldığında sonuç olarak I₂ ile Br⁻ oluşur.

İşlem - 2: (BrO_₃⁻ iyonlarının artışısı). KBrO₃ çözeltisinin tümü be- here katılır. Oluşan koyu mavi renk 3 – 4 dakika içinde yavaş yavaş önce mor ve ardından açık sarı olur.

Açıklama: Orta them potasyum bromat artışını bulunduğunda reaksiyonun son ürünleri KI artışını bulunduğu duruma oranla düştüyyle farklıdır. Burada da ilk reaksiyon Br₂ ve I₂ oluşumuyuyla sonuçlanan bir önceki (11) reaksiyonunun aynıdırıdır. Bununla birlikte, iyodür iyonlarının hızla tüketilmesi nedeniyle (18) reaksiyonu olarız. Eğer biraz HBrO oluşursa (7) ve (9) yarım reaksiyonları uzunca disporsiyonalässar Br₂ ve BrO₃⁻ verir. Yukardaki reaksiyonların her ikiinde de son ürün olarak Br₂ çekmaktadır.

Nişasta ile mavi renk veren I₂ ne olmuştur? Yükseltgen olarak BrO₃⁻ fazlasının ve indirgen olarak iyodun bulunduğu yarım reaksiyondan yararlanlardır aşağıdaki reaksiyon- lar yazılabilir:

(8) ve (5):

\[2BrO_3^- + I_2 \rightarrow Br_2 + 2IO_3^- \]

(19)

(8) ve (6):

\[BrO_3^- + 5/2 I_2 + 2H_2O + H^+ \rightarrow 1/2 Br_2 + 5HIO \]

(20)

(8) ve (4):

\[4BrO_3^- + 5HIO \rightarrow 2Br_2 + 5IO_3^- + 2H_2O + H^+ \]

(21)

Bunlara ek olarak, HIO nun kararsız olduğu, (4) ve (6) yarım reaksiyonları uzunca disporsiyonlalässar I₂ ile IO₅⁻ verdiği söylenebilir.

Bromat iyonlarının yükseltgeme güdük (10) yarım reaksiyonu uzunca IO₅⁻ iyonlarını periyodat asidine (H₅IO₆) yükseltgemeyi yeterli değildir. Özetle, KBrO₃ artırısı varlığında reaksiyonun son ürünler olarak Br₂ ile IO₅⁻ oluşur ve çözeltinin rengi Br₂ nedeniyle açık sarı olur.

DENEME - 76: (İyodürün halogenatlarla yükseltgenmesinin pH a bağlılığı). 3 tüpe 5 er mL seyreltik KClO₃ çözeltisi, başka üç tüpe 5 er
mL seyreltilk KBrO₃ çözeltisi ve başka üç tüpe de 5 er mL seyreltilk KIO₃ çözeltisi koyarak bu tüpleri ClO₅⁻, BrO₅⁻ ve IO₅⁻ sırasına göre üçer dizi biçiminde sıralayınız. Birinci dizideki tüpler 5 er mL asetat tamponu (15 mL 2M CH₃COONa + 2 mL 2M CH₃COOH biçiminde hazırlanmış), ikinci dizideki tüpler 5 er mL seyreltilk asit ve üçüncü dizideki tüpler de 5 er mL seyreltilk HCl çözeltisi (yalnız klorat bulunan tüpe derişik HCl çözeltisi) katınız. Bu tüplerin her birine nişasta çözeltisi katılmış % 5 lik KI çözeltisinden birer mL katınız. Birinci dizide yalnız iyodat tüpünde, ikinci dizide iyodat ve bromat tüplerinde ve üçüncü dizide klorat, bromat ve iyodat tüplerinde mavi renk ortaya çıkar. Dene- menin yapılaşısı aşağıda şematik olarak gösterilmiştir.

+ 5 mL tampon (15 mL 2M CH₃COONa + 2 mL 2M CH₃COOH)
+ 1 mL % 5 lik KI (+ nişasta)

+ 5 mL seyreltilk CH₃COOH
+ 1 mL % 5 lik KI (+ nişasta)

+ 5 mL seyreltilk HCl
+ 1 mL % 5 lik KI (+ nişasta)

Şekil - 10

DENEME - 77: Klorür asidi ile asitlendirilmiş arsenik(III) klorür çözeltisine artıkt çözünmeyinceye kadar katı sodyum hidrojen karbonat katınız. Sonra bu çözeltiye damla damla iyot çözeltisi katınız: Iyot damlalarının rengi gider. Iyodun rengi kalincaya kadar bu işlemi sürdürünüz. Bu anda bazı ortamda AsO₄³⁻ biçiminde bulunan tüm arsenik(III) arsenata (AsO₄³⁻) yükselgenmiştir. Şimdi bu çözeltiye bol miktarda seyreltilk klorür asidi katınız: Açıga çıkan iyot nedeniyle çözelti esmer bir renk alır.
AsO$_3^-$ + I$_2$ + 2OH$^-$ ⇌ AsO$_4^{3-}$ + 2I$^-$ + H$_2$O

veya AsO$_3^-$ + I$_2$ + H$_2$O ⇌ AsO$_4^{3-}$ + 2I$^-$ + 2H$^+$

Bu redoks denge ortamın H$^+$ iyonu konsantrasyonuna (yani pH ina) bağlı olup bazı çözeltide sağ taraf lehine ve asitli çözeltide de sol taraf lehinedir. Genellikle, redoks reaksiyonlarının bir çoğunun yönü ortamın asitliğine bağlıdır.

DENEME - 78: (Nitrit iyonunun yükseltgenme – indirgenme özelliklileri). Bir deneme tüpüne 1 mL % 1 lik sodyum nitrit çözeltisi, 2 mL su ve 8 – 10 damla % 30 luk asetik asit çözeltisi koyunuz ve karıştırıdktan sonra bu çözelti iki tüpe bölünüz. Tüplerden birine 8 – 10 damla % 5 lik potasyum iyodür çözeltisi katınız: Elementel iyot ayrılır ve kahverengi bir gaz çıkışı gözlenez. Öteki tüpe damla damla % 0,1 lik potasyum permanganat çözeltisi katınız: Permanganatın pembe renge kaybolur.

Bu denemedeki reaksiyonların denklemlerini yazınız.

Açıklama: Standart gerilimi NO$_3^-$, H$^+$/HNO$_2$ (E0 = +0,94 V) sisteminin standart geriliminden daha yüksek olan maddeler nitrit iyonunun yükseltgerleri. Örneğin, permanganat iyonu, E0(MnO$_4^-$, H$^+$/Mn$^{2+}$) = +1,51 V olduğundan nitriti yükseltger. Standart gerilim HNO$_2$, H$^+$/NO (E0 = +0,99 V) sisteminin standart geriliminden daha düşük olan maddeler nitrit iyonunu indirgerler. Örneğin, iyodür iyonu, E0(I$_5^-$/3I$^-$) = +0,536 V olduğundan nitriti indirger.

DENEME - 79: 1 mL sodyum sulfit çözeltisine 3 mL seyreltik sülfat asidi, bir damla potasyum iyodür çözeltisi ve 0,5 – 1 mL nişasta çözeltisi koyunuz. Şimdi bu karışımı damla damla % 3 lük H$_2$O$_2$ çözeltisi katınız: Her damlanın çözeltiye düşüşünde mavi bir renk oluşur, fakat biraz çalkalamak gider. Mavi renk çalkamakla gitmeyinceyde H$_2$O$_2$ katmayı sürdürünüz: Bu anda çözeltideki sulfitin tümü sülfata yükseltgenmiştir.

SO$_3^{2-}$ + H$_2$O$_2$ → SO$_4^{2-}$ + H$_2$O

Açıklama: Hidrojen peroksitinin ilk gelen aşırısı, ortamdaki iyodürü elementel iyoda yükseltger ve bu da nişasta ile mavi renk verir. Reaksiyon sırasında geçici olarak oluşan mavi renk, iyodürün yükseltgenmesiyle açığı çıkan iyottan ileri gelir ve çözelti çalkalandığında elementel iyodun sulfit tarafından indirgenmesi nedeniyle kaybolur:

SO$_3^{2-}$ + I$_2$ + H$_2$O → SO$_4^{2-}$ + 2I$^-$ + 2H$^+$

Bu reaksiyonda iyodür, indikatör görevini görür ve bütün sulfitin yükseltgenmesinden sonra elementel iyoda yükseltgenerik nişasta ile mavi renk verir.
Iyodürün indirgenme gerilimi sülfitkinden küçük olduğundan hidrojen peroksit önce sülfiti ve ancak bunun tamami yükseltgendikten sonra iyodür yükseltger. Eğer iyodürün indirgenme gerilimi sülfitkinden daha büyük olsaydı, önce iyodür yükseltgeneceek ve ilk hidrojen peroksit damlası mavi rengin oluşmasına neden olacaktır. Böyle bir durumda ise potasyum iyodür indikatör olarak kullanılamaz.

Indirgen maddenin elementel iyodu iyodüre indirgemeye yetecek büyüklüğe indirgeme gerilimine sahip olduğu durumlarda iyodür nişasta ile birlikte indikatör olarak kullanılabılır.

PREPARATLAR

AMONYUM MANGAN FOSFAT: \(\text{NH}_4\text{MnPO}_4\text{H}_2\text{O} \) \((M = 185, 956) \)

Elde edilişi: 6,9 g sodyum dihidrojen fosfat (\(\text{NaH}_2\text{PO}_4\text{H}_2\text{O} \); \(M = 137,99 \)) ve 9,8 g mangani(II) klorür (\(\text{MnCl}_2\text{H}_2\text{O} \); \(M = 197,905 \)) karışımı bir beherde 500 mL su ile kaynayana kadar ıstırlar. Birkaç damla 1 M amonyak çözeltisi katılır. Bu sırala oluşan amorf çöktelti bir cam baget ile beherin iç yüzeyine sürtülür ve kısa sürede kristal biçime döner. Bundan sonra, kaynar durumdaki çözeltiye artık yeni bir çöktelti oluşmayinecaya kadar bölümler halinde amonyak çözeltisi katılır. İşlem sonunda çözelti pH = 7,5 dolayında olmalıdır. Karışım akar su altında kısa sürede soğutularak yüzülür ve önce az su ile sonra da eter ile yıkanarak kurutulur. Verim 7 g dolayında \(\text{NH}_4\text{MnPO}_4\text{H}_2\text{O} \) dur.

SODYUM PERBORAT: \(\text{NaBO}_3\text{H}_2\text{O} \) \((M = 153,86) \)

Elde edilişi: Saf sodyum perborat, bazık boraks çözeltisine hidrojen peroksidin etkisi ile elde edilir. Bunun için, 38,14 g boraks (\(\text{Na}_2\text{B}_4\text{O}_7\text{H}_2\text{O} = 381,37 \)) ve 8 g sodyum hidroksit (\(\text{NaOH} = 40,00 \)) 265 mL suda çözülür ve bu çözeltiye 45 mL perhidrol (% 30 luk \(\text{H}_2\text{O}_2 \) çözeltisi; \(\text{H}_2\text{O}_2 = 34,015 \)) katılır. Bir süre sonra ayrılan sodyum perborat kristalleri yüzülür, önce soğuk su ile, sonra da alkol ve eter ile yıkanır.

Özellikleri: Büyük, saydam monoklinal prizmalar biçiminde kristellenir. Bozuklar erir. 100 g suda 20 °C de 1,17 g çözünür. Sodyum perboratın formülü NaBO\(_2\)H\(_2\)O\(_2\)-3H\(_2\)O biçiminde de yazılabilir.
KURŞUN KROMAT: PbCrO_4 (M = 323,18)

$$2\text{Pb(CH}_3\text{COO)}_2 + \text{K}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{O} \rightarrow 2\text{PbCrO}_4 + 2\text{CH}_3\text{COOH} + 2\text{CH}_3\text{COOK}$$

2.325,28 294,192 2.323,18

Elde edilisi: Kurşun(II) tuzu çözeltilerinin asıtlendirilmiş dikromat çözeltisi ile işleme sokulmasyla elde edilir. 35 g kurşun asetatin $[\text{Pb(CH}_3\text{COO)}_2\cdot3\text{H}_2\text{O} = 379,33]$ sulu çözeltisine 20 g potasyum dikromatın $(\text{K}_2\text{Cr}_2\text{O}_7 = 294,192)$ sülfat asidi ile asıtlendirilmiş derişik çözeltisi katılır. Oluşan çözelti süzûlür ve su ile yıkanarak 110 °C de kurutulur. Eğer potasyum dikromat çözeltisi asıtlendirilmezse ürün daha koyu sarı renkli olur.

Özellikleri: Monoklinal sistemde kristallenen açık sarı toz. Mol ağırlığı = 323,18 ;

$d = 6,12 \text{ g.cm}^{-3}$. 844 °C de koyu sarı bir sıvı vererek erir. Daha yüksek sıcaklıklarda oksijen kaybederek bozunur. Suda pratikçe çözünmez. (20 °C de 100 g suda 4,2.10^{-6} g çözünür). Nitrat asidi ve bazılarda kolyalıkla çözünür. Teknikte krom sarısı adı altında sarı yağlı boyaların yapımında pigment olarak kullanılır.

DEMİR(II) OKSİT: FeO (M = 71,846)

Demir(II) sülfat çözeltisine çökmkenin tam olması için amonyum oksalatin hassif aquirisi katıldığında,

$$\text{FeSO}_4 + (\text{NH}_4)_2\text{C}_2\text{O}_4 \rightleftharpoons \text{FeC}_2\text{O}_4 + (\text{NH}_4)_2\text{SO}_4$$

Yeşil Sınıf denklemini uyarınca demir(II) oksalat çöker. Demir(II) oksalat ısıtıldığında,

$$\Delta \text{FeC}_2\text{O}_4 \rightarrow \text{FeO} + \text{CO}_2 \uparrow + \text{CO} \uparrow$$

Sınıf Siyah

denklemini uyarınca termik bozunmaya uğrayarak demir(II) oksit verir. Oluşan demir(II) oksit hava ile temasa geldiğinde hava oksijeni tarafından pas olarak bilinen kırmızı renkli demir(II) okside yükseltgenir:

$$4\text{FeO} + \text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3$$

Bu reaksiyon demir(II) oksidin havadaki kararsızlığını gösterir. Havasız ortamda da demir(II) oksit kararlı değildir ve elementel demir ile derin (II,III) oksit vererek disproporsiyonlasır:

$$4\text{FeO} \rightarrow \text{Fe} + \text{Fe}_3\text{O}_4$$
Burada oluşan Fe₃O₄ bileşği FeO ile Fe₂O₃ oksitlerinin bir karışımıdır. Demir(II) oksidin bu özellikleri sık karşılaşılmayan bir bileşik olmasının nedenlerini açıklar.

Elde edilişi : 10 mL açık yeşil renkli 0,2 M demir(II) sülfat (FeSO₄·7H₂O = 278,02) çözeltisine 11 mL 0,2 M amonyum oksalat [(NH₄)₂C₂O₄·H₂O = 142,112] çözeltisi katılarak karıştırılır. Sarı renkli demir(II) oksalat çökteltisi oluşur. Çöktelti trompta emilerek süzülür, damtık su ile yıkanır ve beş dakika süreyle emilerek kurutular. Nemli demir(II) oksalat çökteltisi bir spatül yardımıyla boş bir tüpe aktarılır, önce nem ve ardından kristal suyu çıkıncaya kadar dikkatle ıstırılır. Su çıkışının bitişi tüpün ağız bölgesinde yeni su damlalarının oluşmasından anlasılır. Daha sonra ısıtma yavaşça artırılır ve demir(II) oksalatin sarı rengi bütünleye demir(II) oksidin siyah rengine dönüşünce ısıtma kesilir ve 2 – 3 dakika sogutulur.

Özellikleri : Havada kolaylıkla yükseltgenen siyah toz. E.N. = 1360 °C ; d = 5,7 g.cm⁻³. Kuvvetli bir bazıır ve kolaylıkla CO₂ absoprar. Suda ve alkaillerde pratikçe çözünmez, buna karşılık asitlerde kolaylıkla çözünür.

Deneme : Tüp içindeki demir(II) oksit laboratuvar masası üzerine konulan bir kağıda biraz yüksekten boşaltılırsa havada düşerken pırıltlar. Deneme azaltılmış ışıkta yapılrsa pırıltlama daha iyi gözlenir. Kalıntının soğumasından sonra kağıt üzerinde kırmızı renkli bir pas lekesi oluşur.

BAKIR(I) OXSİT : Cu₂O (M = 143,091)

Elde edilişi : 2,5 g bakır(II) sülfat pentahidrat (CuSO₄·5H₂O = 249,685) 15 mL iğn suda çözülür ve 1,5 g glükoz katılır. Çözelti ısıtilir ve 2,5 mL % 20 lik NaOH çözeltisi hızlı katılır. Karışım karıştırılır ve bir saatt süreyle kendi haline bırakılır. Çöktelti süzülür ve damtık su ile yıkanır.

Deneme: Elde ettiğiınız bakır(I) oksitten dört ayrı deneme tüpüne bir spatül yardımıyla birer parça koyarak aşağıdaki denemeleri yapınız.

(a) Birinci tüpe biraz derişik sülfat asidi koyarak ısıtıınız. Oluşan reaksiyonu gözleyiniz. Çökelteki maddeler nelerdir? Reaksiyon denklemini yazınız.

(b) İkinci tüpe oluşan beyaz çökelti çözünymceye kadar damla damla derişik klorür asidi katınız. Çökeltinin asit aşırısında çözünmesini açıklayınız ve reaksiyon denklemini yazınız.

(c) İkinci denemede elde ettiği klorür asitli çözelti üzerine damla damla % 20 lik NaOH çözeltisi katınız. Reaksiyonun gidişini ve renk değişimini izleyiniz. Reaksiyon denklemini yazınız. Çökelti üzerindeki çözeltiyi dökünüz ve çökelti üzerine damla damla 1 – 2 mL % 10 lik amonyak çözeltisi katınız. Çökeltinin çözünmesini açıklayınız ve reaksiyon denklemini yazınız.

(d) Üçüncü ve dördüncü tüplerde bulunan bakır(I) oksidi % 25 lik amonyak çözeltisi katarak çözünüz. Tüplerden birinin ağzını derhal sıkıca kapatınız ve her iki tüpü de şiddetle çalkalayınız. Renk değişimlerini gözleyerek açıklayınız ve reaksiyon denklemlerini yazınız.

BAKIR(II) OKSİT: CuO \((M = 79,545)\)

\[
\begin{align*}
\text{Cu}^{2+} + 2\text{OH}^{-} & \rightarrow \text{Cu(OH)}_2 \\
\text{Cu(OH)}_2 & \rightarrow \text{CuO} + \text{H}_2\text{O}
\end{align*}
\]

Elde edilişi: Sıcak bakır (II) sülfat çözeltisi üzerine çökmeye tamamlanıncaya kadar sıcak % 5 lik NaOH çözeltisi yavaş yavaş katılır. Reaksiyon karışımı karıştırlarak 10 – 15 dakika ısıtılar, oluşan siyah çökelti süzülür, damıtk su ile iyice yıkanır ve kurutulur.

Özellikleri: Rengi siyah antikahverengi - siyaha kadar değişen amorf veya kristalin toz. \(d = 6,315 \text{ g.cm}^{-3}\). Su ve alkolde pratikçe çözünmez. Amonyakta yavaş; seyreltiğ asit, alkali siyanür ve amonyum karbonat çözeltilerinde kolaylıkla çözünür.

Deneme: Bakır(II) oksidin seyreltiğ ve derişik klorür, nitrat ve sülfat asitlerindeki çözünürüğünü inceleyiniz ve reaksiyon denklemlerini yazınız.
KROM(III) OKSİT: \(\text{Cr}_2\text{O}_3\) (\(M = 151,99\))

\[\text{K}_2\text{Cr}_2\text{O}_7 + 2\text{NH}_4\text{Cl} \rightarrow (\text{NH}_4)_2\text{Cr}_2\text{O}_7 + 2\text{KCl} \]

\[(\text{NH}_4)_2\text{Cr}_2\text{O}_7 \rightarrow \text{Cr}_2\text{O}_3 + \text{N}_2 + 4\text{H}_2\text{O} \]

\[\text{K}_2\text{Cr}_2\text{O}_7 + 2\text{NH}_4\text{Cl} \rightarrow \text{Cr}_2\text{O}_3 + 2\text{KCl} + \text{N}_2 + 4\text{H}_2\text{O} \]

294,192 2,534,92 151,99

Elde edilisi: Amonyum dikromatın boşunmasınayla elde edilir. 147 g (0,5 mol) potasyum dikromat ile 107 g (2 mol) amonyum klorür iyice karıştırılırlar ezilir. Bu karışım bir kröze veya ısıya dayanıklı bir cam tüp içinde su buharı çıkışı bitinceye kadar kuvvetle kızdırılır. Soğuğun kütle su ile kaynatılarak süzülür. Süzgeç üzerinde toplanan ürün kaynar su ile yıkanarak 100 °C de kurutulur. Kızdırmı sırasında amonyum klorür kaybı olacağını amonyum klorür ile potasyum dikromatın eşit miktarlarla alınması uygundur.

Özellikleri: Yeşil, kristalize toz. Heksagonal sistemde kristallenir ve \(\text{Al}_2\text{O}_3\) ile izomorf tutur. Su, asit ve bazlarda çözünmez. Mol ağırlığı = 151,99; \(d = 5,21 \text{ g.cm}^{-3}\); E.N. = 2140 °C. Teknikte yeşil yağboya yapımında pigment olarak kullanılır fakat örtme yeteneği zayıftır.

BAKIR(II) HİDROKİSİT: \(\text{Cu(OH)}_2\) (\(M = 97,561\))

\[\text{CuSO}_4 + 2 \text{NaOH} \rightarrow \text{Cu(OH)}_2 + \text{Na}_2\text{SO}_4 \]

\(5\text{H}_2\text{O}\)

249,685 80,9 97,561 142,041

Elde edilisi: Bir bakır sülfat çözeltisine bakır(II) hidroksidin dehidrasyonunu önleme için 0,5 mL gliserin katılır. Sürekli olarak karıştırılan çözeltiye bakır(II) hidroksidin çözmesi tamamlanmaya kadar yavaş yavaş % 2 lik sodiyum hidroksit çözeltisi katılır. Oluşan çözelti litresinde 1 mL gliserin içeren soğuk su ile dekantasyon yoluyla sülfat iyonları uzaklaştırıncaya kadar yıkanır, bir Büchner hunisinden süzülür ve son bir kez daha su ile çalkalanır.

Özellikleri: Suda çözünmeyen açık mavi kristalize toz. Derişik sodyum hidroksit çözeltisinde çok az, asitlerde ve sulu amonyak çözeltisinde kolaylıkla çözünür. Kristalize biçim 100 °C ye kadar kararlıdır. Taze çöktürülmuş bakır(II) hidroksit ısıtılrsa siyah renkli ve su içeren \(\text{CuO}\) oluşur. \(d = 3,368 \text{ g.cm}^{-3}\). Oluşum entalpisi (18°C do) – 106,7 kcal/mol dür.

Deneme: (1) Üç deneme tüpünün her birine hidroksit koyup birincişine 1 M klorür asidi çözeltisi, ikincişine % 30 luk sodyum hidroksit
 çözeltisi ve üçüncüüne % 25 lik amonyak çözeltisinin aşırısını katınız. Oluşan reaksiyonları gözleyiniz ve reaksiyon denklemlerini yazınız.

(2) Bir deneme tüpüne biraz bakır (II) hidroksit koyarak ısıtınız. Gözlenen olayı açıklayınız ve reaksiyon denklemini yazınız.

BORİK ASİT: H_3BO_3 (M = 61,833)

$$Na_2B_4O_7 + 2HCl + 5H_2O \rightarrow 4H_3BO_3 + 2NaCl$$

201,22 2,36,461 4,61,833

Elde edilişi : 12 g boraks (Na$_2$B$_4$O$_7$.10H$_2$O = 381,37) bir beherde 25 mL suda ısıtılarak çözülür. Bunun üzerine % 25 lik klorür asidi çözeltisinden hesaplanan miktarın hafif aşırısını katılır. Çözeltili yavaşça soğutulur, çoken kristaller bir cam süzgeçten emilerek süzülür, süzgeç kağıdı arasında kurutulur ve sıcak sudan yeniden kristallendirilir.

Özellikleri : Renksiz, kokusuz saydam kristaller veya beyaz toz. Erime noktasi yaklaşık 171 °C. Doğada *sassolite* minerali biçiminde bulunur. Zayıf bir asittır: $pK_1 = 9,23$; $pK_2 = 12,74$; $pK_3 = 13,70 ,0,1$M sulu çözeltide $pH = 5,1$. Suda O°C de 19,5 g.L$^{-1}$ ve 100 °C de 291 g.L$^{-1}$ çözünür. İstilinca su kaybeder:

$$\begin{align*}
\text{Ortoborat} & \xrightarrow{100 \degree C} \text{H}_3\text{BO}_3 \\
\text{Metaborat} & \xrightarrow{140 \degree C} \text{H}_2\text{BO}_3 \\
\text{Proborat} & \xrightarrow{100 \degree C} \text{H}_2\text{BO}_4
\end{align*}$$

Deneme : (1) 2 – 3 mL doymuş borik asit çözeltisi hazırlayınız ve bir universel indikatör kağıdı ile yaklaşık pH mı saptayınız.

(2) Bir saat camında bir damla derişik sulfat asidi, bir damla gliserin ve biraz boraks'ı ucu kivrılmış bir platin tel ile iyice karşılıp teli aleve tutunuz. Alevin altı rengi gözleyiniz ve reaksiyon denklemini yazınız.

SCHWEIZER BELİRTEÇİ : [Cu(NH$_3$)$_4$](OH)$_2$;

Tetraamminbakır(II) hidroksit

Hazırlanışı : (A) Elementel bakır rendeleri biraz amonyum klorür (NH$_4$Cl) içeren % 20 lik amonyak çözeltisi ile örtülür ve bu süspansiyon içinden habberler biçiminde hava geçirilir. Tetraamminbakır(II) hidroksi- din civit mavisi rengindeki çözelti oluşur. Bu çözeltinin kuru amonyak gazı akımda buharlaştırılması sonucunda civit mavisi rengeinde ve uzun iğneler biçiminde [Cu(NH$_3$)$_4$](OH)$_2$ kristalleri elde edilir.
(B) Taze çöktürülmüş bakır(II) hidroksit % 20 lik amonyak çözeltsinde çözülecek tetraamminbakır(II) hidroksitin çözeltisi elde edilir.

Özellikleri: Schweizer belirteci selülozu çöz. Mol ağırlığı = 165,68.

Deneme: Hazırladığınız Schweizer belirteci çözeltisi içine ince dilmiş süzgeç kağıdı parçaları veya pamuk atınız: Saf selülozdan oluşmuş bu maddeler çözünür. Bu çözeltiyi dikkatle asıtlendiriniz: Çözünmüş olan selüloz yeniden çöker.

FEHLING ÇÖZELTİSİ: Bakır(II) tartarat kompleksi

Hazırlanması: Aşağıdaki çözeltiler hazırlanır ve kullanılmadan önce iki çözelti eşit hacimlarda alınarak karıştırılır.

Çözelti - 1: 34,6 g bakır(II) sülfat pentahidrat (CuSO₄.5H₂O = 249,685) 500 mL suda çözülür.

Çözelti - 2: 173 g kristalize sodyum potasyum tartarat (Rochelle tuzu; NaKC₄H₄O₆.4H₂O = 282,226) ve 53 g sodyum hidroksit (NaOH = 40,00) bir miktar suda çözülerek 500 mL ye tamamlanır.

Özellikleri: Koyu mavi renkli çözelti. Aldehit, hidrazin, hidroksilamin gibi indirgen maddeler ile ıslıtıldığında kırmızı renkli bakır(I) oksit (Cu₂O) vererek indirgenir. İdrarda glukoz aranmasına kullanılır.

\[\text{KOOC H} \quad \text{COOK} \]

\[\text{H - C - O} \quad 2+ \quad \text{O - C - H} \]

\[\text{H - C - O} \quad \text{Cu} \quad \text{O - C - H} \]

\[\text{NaOOC} \quad \text{H} \quad \text{COONa} \]

Bakır(II) tartarat kompleksi

Aset aldehit Sodyum potasyum tartarat

\[+ \text{CH}_3 - \text{C} = \text{O} + \text{Cu}_2\text{O} \]

\[\text{N}_2\text{H}_4 + 4\text{Cu}^{2+} + 8\text{OH}^- \quad \text{Ist} \quad \text{N}_2 + 2\text{Cu}_2\text{O} + 6\text{H}_2\text{O} \]

Hidrazin

\[2\text{H}_2\text{N} - \text{OH} + 4\text{Cu}^{2+} + 8\text{OH}^- \quad \text{Ist} \quad \text{N}_2\text{O} + 2\text{Cu}_2\text{O} + 7\text{H}_2\text{O} \]

Hidroksilamin
Deneme: Hazırladığınız Fehling çözeltisini bir tüpte indirgen bir madde (aldehit) ile ısıtınız.

TETRAAMMINBAKIR(II) SÜLFAT: \([\text{Cu(NH}_3\text{)}_4\text{SO}_4\text{.H}_2\text{O}}\)
\(M=245,745\)

\[\text{CuSO}_4\cdot5\text{H}_2\text{O} + 4\text{NH}_3 \rightarrow [\text{Cu(NH}_3\text{)}_4\text{]}\cdot\text{SO}_4\cdot\text{H}_2\text{O} + 4\text{H}_2\text{O}\]

\(249,685 \quad 68,122 \quad 245,745\)

Elde edilişi: İyice toz edilmiş 1,0 g bakır(II) şafak pentahidrat \((\text{CuSO}_4\cdot5\text{H}_2\text{O} = 249,685)\) 15 mL derişik amonyak ve 10 mL su karışımında çözülür, bulanıklık varsa süzülür ve 15 mL etanol yavaş yavaş katılır. Çözelti birkaç saat soğukta bekletilir, oluşan kristaller bir Bücher hunisinden süzülür, önce etanol ve derişik amonyak (1:1) karışımlı, ardından etanol ve eter ile yıkanır ve oda sıcaklığında kurutulur.

Özellikleri: Koyu mavi renkli rombik kristaller oluşturur. \(d = 1,81 \text{ g.cm}^{-3}\). 100 g suda 21,5 °C de 18,5 g çözünür. Havada bozunur. Kuru kuruya ısıtıldığında 120 °C de 1 mol su ile 2 mol amonyak kaybederek CuSO_4.2NH_3 oluşturur ve 160 °C de amonyağın tümünü kaybederek susuz bakır şafak sülfata dönüşür.

Deneme: Birkaç kristali az suda çözüp çözeltiye iki ayrı tüpe bölünüz. Birinin üzerine 1 – 2 mL sodyum hidroksit çözeltisi ve ötekinin üzerine de hidrojen sülfür çözeltisi katınız. Olayı gözleyiniz ve tuzun her iki belirtece karşı farklı davranışının nedenini açıklayıniz.

HEKSAAMMINNIKEL(II) KLORÜR: \([\text{Ni(NH}_3\text{)}_6\text{Cl}_2 \quad (M = 231,8)}\)

\[
\text{Ni}^{2+} + 2\text{NH}_3 + 2\text{H}_2\text{O} \rightarrow \text{Ni(OH)}_2 + 2\text{NH}_4^+
\]

\[
\text{Ni(OH)}_2 + 6\text{NH}_3 + 2\text{Cl}^- \rightarrow [\text{Ni(NH}_3\text{)}_6\text{]}\cdot\text{Cl}_2
\]

Elde edilişi: 10 g nikel(II) nitrat \([\text{Ni(NO}_3\text{)}_2\cdot6\text{H}_2\text{O}]\) olanak oranında az miktarda suda çözülür ve üzerine başlangıçta oluşan çoketti bu tünüyle çözünürceye kadar % 25 lik amonyak çözeltisi katılır. Kullanılan nikel(II) nitratin yeterince saf olmadiği durumlarda oluşan demir, alüminyum, mangan ve kuruş hidroksitler çözünmeden kalır. Çözelti süzülür, 25 – 30 °C de doymuş amonyum klorür çözeltisi ve heksaamminnikel(II) klorürün çözmesi tamamlanmecaya kadar 2 M amonyak çözeltisi katılır. Çoketti derhal bir Bücher hunisinden süzülür, iki
kez çöktürúcü çözelti ve ardından sıra ile derişik amonyak çözeltisi, eşiç hacimlarda etanol ve derişik amonyak çözeltisi karışımı ve son olarak % 96 lik etanol çözeltisi kullanılarak yikanır. Ele geçen ürün 100 °C nin altındaki bir sıcaklıkta kurutulur.

Özellikleri: Mavi – menekşe renkli kristalize toz. $d = 1,468 \text{ g.cm}^{-3}$. Olusum entalpisi $-16,3 \text{ kcal/mol}$. Su ile amonyak kaybederek bozunur. Sulu amonyakta çözünür, derişik amonyak ve alkolde çözünmez.

POTASYUM TRIOKSALATOKROMAT(III): $K_3[Cr(C_2O_4)_3].3H_2O$

$(M = 487,4)$; Potasyum krom oksalat

$$Cr_2O_7^{2-} + 3C_2O_4^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 6CO_2 + 7H_2O$$

$$Cr^{3+} + 3C_2O_4^{2-} + 3K^+ \rightarrow K_3[Cr(C_2O_4)_3]$$

$$K_3[Cr(C_2O_4)_3] + 3H_2O \rightarrow K_3[Cr(C_2O_4)_3].3H_2O$$

Elde edilişi: Oksalik asit ve potasyum oksalatın potasyum dikromat ile işleme sokulmasıyla elde edilir. 27 g oksalik asit dihidrat $(H_2C_2O_4.2H_2O = 126,067)$ ve 12 g potasyum oksalat monohidratın $(K_2C_2O_4.H_2O = 184,239)$ derişik çözeltisi üzerine 12 g potasyum dikromatın $(K_2Cr_2O_7 = 294,192)$ derişik su çözeltisi damla damla ve karıştırarak katılır. Karışım küçük bir hacıma kadar buharlaştırılır ve kristallenmesi için yavaşça soğutulur.

POTASYUM TRIOKSALATOFEFFERAT(III): $K_3[Fe(C_2O_4)_3]$

$(M = 437, 213)$

Elde edilişi: Önce baryum oksalat hazırlanır. Bunun için 2,5 g baryum klorür dihidrat’ın (BaCl$_2$.2H$_2$O = 244,28) 6 mL sudaki çözeltisi 1,5 g sodyum oksalat’ın (Na$_2$C$_2$O$_4$ = 134,000) 40 mL sudaki çözeltisine katılır. Oluşan kristaller sinterleştirilmiş cam süzgeçten süzülür ve bir çok kez soğuk su ile yıkanır.

Potasyum trioksalatoferrat(III) elde etmek için 500 mL lik bir behere 1,25 g demir(III) sülfat, hazırlanan baryum oksalat, 1,5 g potasyum oksalat ve 30 mL su konular. Karışım hacmi sabit tutularak bir su

DEMİR(II) SÜLFAT : FeSO₄·7H₂O (M = 278,02)

\[
\text{Fe} + \text{H₂SO₄} + 7\text{H₂O} \rightarrow \text{FeSO₄}·7\text{H₂O} + \text{H₂}
\]

55,85 98,08 278,02

Elde edilisi : Demir tel veya demir tozu sıcakta seyreltiğ (1 M) sulfat asidinde çözülür. İşlem sırasında su katılarak çözeltinin hacminin sabit kalması sağlanır. Çözünme sonucunda ele geçen derişik ve sıcak çözelti daha önceden sulfat asidi ile çalkalanmış bir porselen kapsülle süzülür, yüzeyinde bir kristal film oluşmaya başlayıcaya kadar buharlaştırılır ve kristallenmeye bırakılır. Ayrıca kristallerin üzerindeki sulu çözelti aktarılır, kristaller az miktarda su ve etanol ile yıkanır. Sütge kağıdı arasında bastırılırlar nemi alınan kristaller 30 °C de kurutulur.

Özellikleri : Açık yeşil renkli monoklinal kristaller. Kuru kuruya ıştıldığında 6 molekül suyunu kolaşıkla kaybeder. Son su molekülü ancak kızıl dereceye ıştıldığında çıkar ve geriye beyaz renkli susuz demir(II) sulfat kalır. Susuz tuz neme karşı çok duyarlıdır ve nem eserlerinin varlığında bile derhal mavimtrak yeşil bir renk alır. 56 °C nin altında 7 mol, 56 – 64 °C arasında 4 mol ve 64 °C nin üzerinde 1 mol kristal suyu alarak kristallenir. 100 g suda 20 °C de 26,5 g, 40 °C de 40,2 g çözünür.

MOHR TUZU [Demir(II) amonyum sulfat] : (NH₄)₂Fe(SO₄)₂·6H₂O (M = 392, 11)

\[
2\text{NH}_4^+ + \text{Fe}^{2+} + 2\text{SO}_4^{2-} + 6\text{H}_2\text{O} \rightarrow (\text{NH}_4)_2\text{Fe(SO}_4)_2\cdot6\text{H}_2\text{O}
\]

Elde edilisi : Derişik amonyum sulfat ve demir(II) sulfat çözeltilerinin karıştırılması ve kristallenmeye bırakılarak elde edilir. Bunun için 14 g demir(II) sulfat (FeSO₄·7H₂O = 278,02) ve 7 g amonyum sulfat [(NH₄)₂SO₄ = 132,139] ayrı ayrı olanak oranında az suda 60 – 70 °C de çözülür. Bu çözelti bir porselen kapsülde karıştırılır ve az mktarda sulfat asidi katılıp soğumaya bırakılır. Mavimsi yeşil kristaller biçiminde ayrılan Mohr tuzu süzülür, sütge kağıdı arasında bastırlar nemi alınır ve fazla yüksek olmayan bir sıcaklıkta kurutulur.
Özellikleri: Soluk yeşil renkli saydam monoklinal kristaller. \(d = 1,87 \text{ g.cm}^{-3} \). 100 g suda 20 °C de 26,9 g 80 °C de 73,0 g çözünür. Sulu çözeltisi demir(II) sülfat ile amonyum sülfat çözeltilerinin karşımı gibi davranan bir çifttizdir.

POTASYUM KROM ŞAPI : KCr(SO}_4\)_2.12H}_2\text{O} ;

Potasyum krom(III) sülfat ; \((M = 499,41)\)

\[
\text{K}_2\text{Cr}_2\text{O}_7 + 3\text{C}_2\text{H}_5\text{OH} + 4\text{H}_2\text{SO}_4 \rightarrow \text{Cr}_2\text{(SO}_4\)_3 + 3\text{CH}_3\text{COH} + \text{K}_2\text{SO}_4 + 7\text{H}_2\text{O}
\]

\[
294,192 + 346,02 - 392,18 + 174,266
\]

\[
\text{K}_2\text{SO}_4 + \text{Cr}_2\text{(SO}_4\)_3 + 24\text{H}_2\text{O} \rightarrow 2\text{KCr(SO}_4\)_2.12\text{H}_2\text{O}
\]

Elde edilişi: İnce toz biçimine getirilmiş 10 g potasyum dikromat \((\text{K}_2\text{Cr}_2\text{O}_7) \) 200 mL lik bir beherde 15 mL suda hafifçe ısıtılarak çözülür. Bu çözeltiyi hesaplanan miktarın 1,5 katı derişik sülfat asidi karışıarak ve yavaş yavaş katılır. İşlem sırasında ısılan çözelti bir buz banyosunda 10 °C ye kadar soğutulur. Bundan sonra, hesaplanan miktarın 1,5 katı etanol bir damlatma hunisinden yavaş yavaş ve karışımın sıcaklığı 40 °C nin üzerine çıkmayacak biçimde katılır. Çözelti kristallenmeye bırakılır. Sütülen kristaller düzgün kağıdı arasında bastırlarak kurutulur ve 30 – 35 °C de az suda yeniden kristallendirilerek saflaştırılır. İşlem sırasında sıcaklık 40 °C nin üzerine çıkarsa kristaller birkaç hafta sonra oluşmaya başlar. Potasyum krom şapi, krom(III) sülfat ile potasyum sülfatın sıcakta doymuş çözeltileri karıştırlıp soğumaya bırakılarak da elde edilebilir.

Özellikleri: Köy mor - menekşe renkli oktaedral kristaller oluşturur. Büyük bir kristalden işığa bakıls rsa koyu kırmızı görünür. 89 °C de kendi kristal suyunda erir. Mol ağırlığı = 499,41 ; \(d =1,84 \text{ g.cm}^{-3} \). 100 g suda 25 °C de 12,51 g çözünür.

Deneme: (1) İyi oluşmuş bir kristali seçiniz ve bunu bir iplik yardımıyla bir cam çubuğa asarak ana çözelti içine daldırınız ve 15 gün kadar bekletiniz.

(2) Benzer biçimde bir başka kristali doymuş bir potasyum alüminyum şapi çözeltisi içine daldirarak bekletiniz ve olayı gözleyiniz.
AMONYUM DEMİR ŞAPI: $\text{NH}_4\text{Fe(SO}_4\text{)}_2 \cdot 12\text{H}_2\text{O}$ ($M = 482,19$)

$\text{(NH}_4\text{)}_2\text{Fe(SO}_4\text{)}_2 + \text{FeSO}_4 + 2\text{HNO}_3 + \text{H}_2\text{SO}_4 \rightarrow 2\text{NH}_4\text{Fe(SO}_4\text{)}_2 + 2\text{H}_2\text{O} + 2\text{NO}_2$

$(6\text{H}_2\text{O})$ $(7\text{H}_2\text{O})$ $(12\text{H}_2\text{O})$
$392,14$ $278,02$ $482,19$

Elde edilişi: 250 mL lik bir balona 60 mL seyreltik sülfat asidi konulduktan sonra içine 20 g Mohr tuzu, $[(\text{NH}_4\text{)}_2\text{Fe(SO}_4\text{)}_2 \cdot 6\text{H}_2\text{O} = 392,143]$, az miktarda su ve 14,2 g demir(II) sülfat heptahidrat ($\text{FeSO}_4 \cdot 7\text{H}_2\text{O} = 278,02$) katıları hafifçe ısıtılarak çözülür. Gerekirse bir kirmalı süzgeçten süzülür, 4 mL derişik nitrat asidi katıları kırımızu duman-ların kısıt bitinceyeye kadar kaynatılır. Çözeltiden alınan küçük bir örnek bir deneme tüpüne konularak üzerine biraz potasyum heksasiyano-ferrat(III) [K₃Fe(CN)₆] çözeltisi katılır. Mavi bir rengin (Berlin mavisi) veya çözeltinin oluşumu demir(II) nin tümünün yükseltgenmedğini gösterir. Bu durumda bir kaç mL derişik nitrat asidi katılır yeniden kaynatılır ve yeniden mavi renk verip vermediği denetlenir. Mavi rengin oluşmaması yükseltgenmenin tamamlandığını gösterir. Gerekiyorsa çözelti bir süre kaynatılarak derişikleştiriilir ve bir behere dökülen kristallenmeye bırakılır. Çözeltiye amonyum demir şapi kristalleri katıları kristallenme hızlandırlabilir. Oluşan kristaller bir Büchner hunisinden emilerek süzülür, az miktarda soğuk su ile yıkanır, süzgeç arasında bastırılarak suyu alınır ve oda sıcaklığında kurutulur.

Özellikleri: Hafif morumdu renkli oktahedral kristaller oluşturur. Saf durumda renksiz olmakta birlikte, demir tuzlarının genellikle eser miktarda mangan içermesi nedeniyle hafifçe renklenir. 100 g suda 20 °C de 124 g ve 100 °C de 400 g çözünür.

SODYUM TİYOSÜLFAT: $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$ ($M = 248,18$)

$\text{Na}_2\text{SO}_3 + \text{S} \rightarrow \text{Na}_2\text{S}_2\text{O}_3$

$126,042$ $32,064$ $158,11$

Elde edilişi: Bir erlene 50 mL su ve 3,5 g sodyum sülfat konulur ve buna etanol ile ıslatılmış 2,5 g kükürt tozu katıları karışım kaynaya- na kadar ısıtırlar. Reaksiyonun biştiği çözeltinin nötral reaksiyon verme- siden anlasılır. Sıcak çözelti süzülür, bir su banyosunda kristallenme başlaymaya kadar buharlaştırılır ve soğumaya bırakılır. Oluşan kris- taller emilerek süzülür.
Özellikleri: Hızla ıstıldığında 48 °C de eriyen saydam ve renksiz kristaller. Nemli havada hasıra nem çeker. 100 °C de kristal suyunun tümünü kaybeder. Daha yüksek sıcaklıklarda bozunur. d = 1,69 g.cm⁻³. Çözeltilinde pH = 6,5 – 8,0 dir.

Deneme: (1) Derişik bir sodyum tiyosülfat çözeltisi üzerine 1 – 2 mL klorür asidi katınız. Olayı gözleyiniz ve reaksiyon denklemini yazınız.

(2) Bir kruvaze birkaç tane sodyum tiyosülfat kristali koyunuz, önce dikkatle ve ardından kuvvetle ısıtınız. Değişimi gözleyiniz ve reaksiyon denklemini yazınız.

(3) Bir tüpte bulunan 3 – 4 mL klor suyu üzerine damla damla sodyum tiyosülfat çözeltisi katınız ve klor kokusunun kaybolduğunu gözleyiniz. Sodyum tiyosülfat antiklor olarak adlandırılır.

\[
\text{Na}_2\text{S}_2\text{O}_3 + 4\text{Cl}_2 + 5\text{H}_2\text{O} \rightarrow 2\text{NaHSO}_4 + 8\text{HCl}
\]

\[
\text{Na}_2\text{S}_2\text{O}_3 + 2\text{HCl} \rightarrow 2\text{NaCl} + \text{H}_2\text{O} + \text{S} + \text{SO}_2
\]

(4) Aynı denemeyi iyot çözeltisi ile tekrarlayınız ve reaksiyon denklemini yazınız.
KAYNAKLAR

Laboratory Experiments in General Chemistry. Mir Publishers, Moscow, 1974.

MARMARA ÜNİVERSİTESİ
TEKNIK EĞİTİM FAKÜLTESİ
DÖNER SERMAYE İŞLETMESİ
MATBAASı BİRİMİNDE BÂSIMİŞTİR.

İSTANBUL – 1991